Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,13 @@ from sklearn.model_selection import train_test_split
|
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
import gradio as gr
|
7 |
import os
|
|
|
|
|
8 |
|
9 |
# API Endpoints
|
10 |
WEATHER_API = "https://api.open-meteo.com/v1/forecast"
|
11 |
ELECTRICITY_PRICE_API = "https://www.elprisetjustnu.se/api/v1/prices"
|
12 |
-
|
13 |
|
14 |
# Fetch weather data
|
15 |
def fetch_weather_data():
|
@@ -26,16 +28,28 @@ def fetch_weather_data():
|
|
26 |
|
27 |
# Fetch electricity price data
|
28 |
def fetch_electricity_prices():
|
29 |
-
|
|
|
|
|
30 |
response.raise_for_status()
|
31 |
return pd.DataFrame(response.json())
|
32 |
|
33 |
-
# Fetch energy production
|
34 |
def fetch_energy_production_data():
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
response.raise_for_status()
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# Prepare the dataset
|
41 |
def prepare_dataset(weather_data, electricity_data, energy_data):
|
@@ -64,6 +78,28 @@ def predict_price(features):
|
|
64 |
prediction = model.predict(pd.DataFrame([features]))
|
65 |
return prediction[0]
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
# Gradio Interface
|
68 |
def gradio_interface():
|
69 |
def wrapper(temp, precip, wind_speed, humidity, energy_price, electricity_price):
|
@@ -95,16 +131,19 @@ def gradio_interface():
|
|
95 |
interface.launch()
|
96 |
|
97 |
if __name__ == "__main__":
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
|
5 |
from sklearn.metrics import mean_squared_error
|
6 |
import gradio as gr
|
7 |
import os
|
8 |
+
import json
|
9 |
+
import datetime
|
10 |
|
11 |
# API Endpoints
|
12 |
WEATHER_API = "https://api.open-meteo.com/v1/forecast"
|
13 |
ELECTRICITY_PRICE_API = "https://www.elprisetjustnu.se/api/v1/prices"
|
14 |
+
ENERGY_CHARTS_API = "https://energy-charts.info/api/public_power"
|
15 |
|
16 |
# Fetch weather data
|
17 |
def fetch_weather_data():
|
|
|
28 |
|
29 |
# Fetch electricity price data
|
30 |
def fetch_electricity_prices():
|
31 |
+
today = datetime.datetime.now().strftime('%Y/%m-%d')
|
32 |
+
url = f"{ELECTRICITY_PRICE_API}/{today}_SE3.json" # Replace 'SE3' with the desired price category
|
33 |
+
response = requests.get(url)
|
34 |
response.raise_for_status()
|
35 |
return pd.DataFrame(response.json())
|
36 |
|
37 |
+
# Fetch energy production data using Energy-Charts API
|
38 |
def fetch_energy_production_data():
|
39 |
+
params = {
|
40 |
+
"country": "se", # Sweden country code
|
41 |
+
"start": "2023-01-01",
|
42 |
+
"end": "2023-12-31"
|
43 |
+
}
|
44 |
+
response = requests.get(ENERGY_CHARTS_API, params=params)
|
45 |
response.raise_for_status()
|
46 |
+
data = response.json()
|
47 |
+
production_data = {
|
48 |
+
"unix_seconds": data["unix_seconds"],
|
49 |
+
"production": {ptype["name"]: ptype["data"] for ptype in data["production_types"]}
|
50 |
+
}
|
51 |
+
production_df = pd.DataFrame(production_data)
|
52 |
+
return production_df
|
53 |
|
54 |
# Prepare the dataset
|
55 |
def prepare_dataset(weather_data, electricity_data, energy_data):
|
|
|
78 |
prediction = model.predict(pd.DataFrame([features]))
|
79 |
return prediction[0]
|
80 |
|
81 |
+
# Update predictions and save to file
|
82 |
+
def update_predictions():
|
83 |
+
# Fetch the latest data
|
84 |
+
weather_data = fetch_weather_data()
|
85 |
+
electricity_data = fetch_electricity_prices()
|
86 |
+
energy_data = fetch_energy_production_data()
|
87 |
+
|
88 |
+
# Prepare dataset
|
89 |
+
dataset = prepare_dataset(weather_data, electricity_data, energy_data)
|
90 |
+
|
91 |
+
# Load the model
|
92 |
+
model = xgb.XGBRegressor()
|
93 |
+
model.load_model("electricity_price_model.json")
|
94 |
+
|
95 |
+
# Generate predictions
|
96 |
+
predictions = model.predict(dataset.drop("price", axis=1))
|
97 |
+
|
98 |
+
# Save predictions to file
|
99 |
+
predictions_output = dataset.copy()
|
100 |
+
predictions_output["predicted_price"] = predictions
|
101 |
+
predictions_output.to_json("predictions.json", orient="records")
|
102 |
+
|
103 |
# Gradio Interface
|
104 |
def gradio_interface():
|
105 |
def wrapper(temp, precip, wind_speed, humidity, energy_price, electricity_price):
|
|
|
131 |
interface.launch()
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
+
import sys
|
135 |
+
if len(sys.argv) > 1 and sys.argv[1] == "update":
|
136 |
+
update_predictions()
|
137 |
+
else:
|
138 |
+
# Fetch data
|
139 |
+
weather_data = fetch_weather_data()
|
140 |
+
electricity_data = fetch_electricity_prices()
|
141 |
+
energy_data = fetch_energy_production_data()
|
142 |
+
|
143 |
+
# Prepare dataset and train the model
|
144 |
+
dataset = prepare_dataset(weather_data, electricity_data, energy_data)
|
145 |
+
rmse = train_model(dataset)
|
146 |
+
print(f"Model trained with RMSE: {rmse}")
|
147 |
+
|
148 |
+
# Launch Gradio interface
|
149 |
+
gradio_interface()
|