H2OTest / documentation /docs /get-started /llm-studio-performance.md
elineve's picture
Upload 301 files
07423df
|
raw
history blame
6.3 kB
---
description: Setting up and runnning H2O LLM Studio requires the following minimal prerequisites. This page lists out the speed and performance metrics of H2O LLM Studio based on different hardware setups.
---
# H2O LLM Studio performance
Setting up and runnning H2O LLM Studio requires the following minimal [prerequisites](set-up-llm-studio.md#prerequisites). This page lists out the speed and performance metrics of H2O LLM Studio based on different hardware setups.
The following metrics were measured.
- **Hardware setup:** The type and number of computing devices used to train the model.
- **LLM backbone:** The underlying architecture of the language model. For more information, see [LLM backbone](concepts.md#llm-backbone).
- **Quantization:** A technique used to reduce the size and memory requirements of the model. For more information, see [Quantization](concepts.md#quantization).
- **Train**: The amount of time it took to train the model in hours and minutes.
- **Validation:** The amount of time it took to validate the mode in hours and minutes.
| Hardware setup | LLM backbone | Quantization | Train (hh:mm:ss)| Validation (hh:mm:ss) |
|---|---|---|---|---|
| 8xA10G | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 11:35 | 3:32 |
| 4xA10G | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 21:13 | 06:35 |
| 2xA10G | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 37:04 | 12:21 |
| 1xA10G | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 1:25:29 | 15:50 |
| 8xA10G | h2oai/h2ogpt-4096-llama2-7b | nf4 | 14:26 | 06:13 |
| 4xA10G | h2oai/h2ogpt-4096-llama2-7b | nf4 | 26:55 | 11:59 |
| 2xA10G | h2oai/h2ogpt-4096-llama2-7b | nf4 | 48:24 | 23:37 |
| 1xA10G | h2oai/h2ogpt-4096-llama2-7b | nf4 | 1:26:59 | 42:17 |
| 8xA10G | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | OOM | OOM |
| 4xA10G | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | OOM | OOM |
| 2xA10G | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | OOM | OOM |
| 1xA10G | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | OOM | OOM |
| 8xA10G | h2oai/h2ogpt-4096-llama2-13b | nf4 | 25:07 | 10:58 |
| 4xA10G | h2oai/h2ogpt-4096-llama2-13b | nf4 | 48:43 | 21:25 |
| 2xA10G | h2oai/h2ogpt-4096-llama2-13b | nf4 | 1:30:45 | 42:06 |
| 1xA10G | h2oai/h2ogpt-4096-llama2-13b | nf4 | 2:44:36 | 1:14:20 |
| 8xA10G | h2oai/h2ogpt-4096-llama2-70b | nf4 | OOM | OOM |
| 4xA10G | h2oai/h2ogpt-4096-llama2-70b | nf4 | OOM | OOM |
| 2xA10G | h2oai/h2ogpt-4096-llama2-70b | nf4 | OOM | OOM |
| 1xA10G | h2oai/h2ogpt-4096-llama2-70b | nf4 | OOM | OOM |
|---|---|---|---|---|
| 4xA100 80GB | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 7:04 | 3:55 |
| 2xA100 80GB | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 13:14 | 7:23 |
| 1xA100 80GB | h2oai/h2ogpt-4096-llama2-7b | bfloat16 | 23:36 | 13:25 |
| 4xA100 80GB | h2oai/h2ogpt-4096-llama2-7b | nf4 | 9:44 | 6:30 |
| 2xA100 80GB | h2oai/h2ogpt-4096-llama2-7b | nf4 | 18:34 | 12:16 |
| 1xA100 80GB | h2oai/h2ogpt-4096-llama2-7b | nf4 | 34:06 | 21:51 |
| 4xA100 80GB | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | 11:46 | 5:56 |
| 2xA100 80GB | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | 21:54 | 11:17 |
| 1xA100 80GB | h2oai/h2ogpt-4096-llama2-13b | bfloat16 | 39:10 | 18:55 |
| 4xA100 80GB | h2oai/h2ogpt-4096-llama2-13b | nf4 | 16:51 | 10:35 |
| 2xA100 80GB | h2oai/h2ogpt-4096-llama2-13b | nf4 | 32:05 | 21:00 |
| 1xA100 80GB | h2oai/h2ogpt-4096-llama2-13b | nf4 | 59:11 | 36:53 |
| 4xA100 80GB | h2oai/h2ogpt-4096-llama2-70b | nf4 | 1:13:33 | 46:02 |
| 2xA100 80GB | h2oai/h2ogpt-4096-llama2-70b | nf4 | 2:20:44 | 1:33:42 |
| 1xA100 80GB | h2oai/h2ogpt-4096-llama2-70b | nf4 | 4:23:57 | 2:44:51 |
:::info
The runtimes were gathered using the default parameters.
<details>
<summary>Expand to see the default parameters </summary>
```
architecture:
backbone_dtype: int4
force_embedding_gradients: false
gradient_checkpointing: true
intermediate_dropout: 0.0
pretrained: true
pretrained_weights: ''
augmentation:
random_parent_probability: 0.0
skip_parent_probability: 0.0
token_mask_probability: 0.0
dataset:
add_eos_token_to_answer: true
add_eos_token_to_prompt: true
add_eos_token_to_system: true
answer_column: output
chatbot_author: H2O.ai
chatbot_name: h2oGPT
data_sample: 1.0
data_sample_choice:
- Train
- Validation
limit_chained_samples: false
mask_prompt_labels: true
parent_id_column: None
personalize: false
prompt_column:
- instruction
system_column: None
text_answer_separator: <|answer|>
text_prompt_start: <|prompt|>
text_system_start: <|system|>
train_dataframe: /data/user/oasst/train_full.pq
validation_dataframe: None
validation_size: 0.01
validation_strategy: automatic
environment:
compile_model: false
find_unused_parameters: false
gpus:
- '0'
- '1'
- '2'
- '3'
- '4'
- '5'
- '6'
- '7'
huggingface_branch: main
mixed_precision: true
number_of_workers: 8
seed: -1
trust_remote_code: true
use_fsdp: false
experiment_name: default-8-a10g
llm_backbone: h2oai/h2ogpt-4096-llama2-7b
logging:
logger: None
neptune_project: ''
output_directory: /output/...
prediction:
batch_size_inference: 0
do_sample: false
max_length_inference: 256
metric: BLEU
metric_gpt_model: gpt-3.5-turbo-0301
metric_gpt_template: general
min_length_inference: 2
num_beams: 1
num_history: 4
repetition_penalty: 1.2
stop_tokens: ''
temperature: 0.3
top_k: 0
top_p: 1.0
problem_type: text_causal_language_modeling
tokenizer:
add_prompt_answer_tokens: false
max_length: 512
max_length_answer: 256
max_length_prompt: 256
padding_quantile: 1.0
use_fast: true
training:
batch_size: 2
differential_learning_rate: 1.0e-05
differential_learning_rate_layers: []
drop_last_batch: true
epochs: 1
evaluate_before_training: false
evaluation_epochs: 1.0
grad_accumulation: 1
gradient_clip: 0.0
learning_rate: 0.0001
lora: true
lora_alpha: 16
lora_dropout: 0.05
lora_r: 4
lora_target_modules: ''
loss_function: TokenAveragedCrossEntropy
optimizer: AdamW
save_best_checkpoint: false
schedule: Cosine
train_validation_data: false
warmup_epochs: 0.0
weight_decay: 0.0
```
</details>
:::