emielclopterop commited on
Commit
2b01989
·
verified ·
1 Parent(s): e03a30f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -7,7 +7,7 @@ def load_qa_model():
7
  return pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
8
 
9
  def load_classifier_model():
10
- return pipeline("zero-shot-classification", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
11
 
12
  def load_translator_model(target_language):
13
  try:
@@ -91,7 +91,7 @@ with gr.Blocks() as demo:
91
  with gr.Tab("Single-Models"):
92
  gr.Markdown("This tab is for single models demonstration.")
93
 
94
- task_select_single = gr.Dropdown(["Question Answering", "Zero-Shot Classification", "Translation", "Text Generation", "Summarization"], label="Select Task")
95
  input_text_single = gr.Textbox(label="Input Text")
96
 
97
  # Additional inputs for specific tasks
@@ -146,7 +146,7 @@ with gr.Blocks() as demo:
146
  def execute_task_single(task, input_text, context, labels, target_language):
147
  if task == "Question Answering":
148
  return process_qa(context=context, question=input_text)
149
- elif task == "Zero-Shot Classification":
150
  if not labels:
151
  return "Please provide labels for classification."
152
  return process_classifier(text=input_text, labels=labels)
 
7
  return pipeline("question-answering", model="bert-large-uncased-whole-word-masking-finetuned-squad")
8
 
9
  def load_classifier_model():
10
+ return pipeline("Sentiment Analysis", model="MoritzLaurer/deberta-v3-base-zeroshot-v1.1-all-33")
11
 
12
  def load_translator_model(target_language):
13
  try:
 
91
  with gr.Tab("Single-Models"):
92
  gr.Markdown("This tab is for single models demonstration.")
93
 
94
+ task_select_single = gr.Dropdown(["Question Answering", "Sentiment Analysis", "Translation", "Text Generation", "Summarization"], label="Select Task")
95
  input_text_single = gr.Textbox(label="Input Text")
96
 
97
  # Additional inputs for specific tasks
 
146
  def execute_task_single(task, input_text, context, labels, target_language):
147
  if task == "Question Answering":
148
  return process_qa(context=context, question=input_text)
149
+ elif task == "Sentiment Analysis":
150
  if not labels:
151
  return "Please provide labels for classification."
152
  return process_classifier(text=input_text, labels=labels)