Spaces:
Running
Running
File size: 67,019 Bytes
2c41ede 0ef1e7a 679c889 9e010e9 7409de7 0ef1e7a b4e520b 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a c648d0c 0ef1e7a 470297d b4e520b 470297d b4e520b 59f8ee9 b4e520b 470297d b4e520b 0ef1e7a b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 59f8ee9 470297d b4e520b 470297d b4e520b 470297d e1ccf49 470297d e1ccf49 470297d e1ccf49 470297d e1ccf49 470297d e1ccf49 b4e520b 470297d e1ccf49 470297d e1ccf49 470297d e1ccf49 470297d 47e2a7c 470297d b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 676cf64 b4e520b 0ef1e7a b4e520b 0ef1e7a a17b4f2 11269b9 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d b4e520b 11269b9 0ef1e7a 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d 0ef1e7a b4e520b 0ef1e7a b4e520b 11269b9 b4e520b 470297d 11269b9 470297d 11269b9 470297d 11269b9 470297d b4e520b 11269b9 470297d b4e520b 11269b9 470297d 11269b9 470297d 11269b9 0ef1e7a 59f8ee9 11269b9 59f8ee9 11269b9 59f8ee9 11269b9 59f8ee9 11269b9 59f8ee9 11269b9 b9f7c90 59f8ee9 b9f7c90 59f8ee9 11269b9 59f8ee9 0ef1e7a b4e520b 59f8ee9 b4e520b 59f8ee9 11269b9 59f8ee9 b9f7c90 59f8ee9 b9f7c90 59f8ee9 11269b9 59f8ee9 470297d b4e520b 470297d 0ef1e7a 470297d 0ef1e7a 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d 21cf1c2 470297d b4794a2 470297d 0ef1e7a 9ddc325 470297d 7745d43 470297d 9ddc325 470297d 9ddc325 0ef1e7a b4e520b b4794a2 37c8c7d 1a4e64f b4794a2 470297d b4794a2 470297d b4794a2 470297d b4794a2 470297d b4794a2 470297d b4794a2 470297d b4794a2 21cf1c2 b4794a2 470297d b4794a2 470297d b4794a2 470297d b4794a2 470297d b4794a2 1a4e64f 470297d b4794a2 0ef1e7a 470297d 0ef1e7a 470297d 0ef1e7a b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d 0ef1e7a 470297d 0ef1e7a b4e520b 470297d b4e520b 470297d 0ef1e7a 470297d b4e520b 470297d b4e520b 470297d b4e520b 470297d f7be255 0e8e44e f7be255 0e8e44e f7be255 0e8e44e b89b477 0e8e44e b89b477 9950a7e b89b477 ab96cef b89b477 7793fac b89b477 7793fac b89b477 7793fac b89b477 7793fac b89b477 ab96cef b89b477 9950a7e b89b477 9950a7e fa01404 59f8ee9 f5bd7c3 59f8ee9 f5bd7c3 59f8ee9 b89b477 f5bd7c3 59f8ee9 b89b477 f5bd7c3 59f8ee9 eb7662c 59f8ee9 eb7662c 59f8ee9 eb7662c 59f8ee9 b89b477 59f8ee9 b89b477 59f8ee9 fa01404 b89b477 fa01404 eb7662c fa01404 eb7662c b89b477 eb7662c b89b477 fa01404 eb7662c fa01404 eb7662c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 |
from dataclasses import dataclass
from breed_health_info import breed_health_info
from breed_noise_info import breed_noise_info
import traceback
import math
import random
@dataclass
class UserPreferences:
"""使用者偏好設定的資料結構"""
living_space: str # "apartment", "house_small", "house_large"
yard_access: str # "no_yard", "shared_yard", "private_yard"
exercise_time: int # minutes per day
exercise_type: str # "light_walks", "moderate_activity", "active_training"
grooming_commitment: str # "low", "medium", "high"
experience_level: str # "beginner", "intermediate", "advanced"
time_availability: str # "limited", "moderate", "flexible"
has_children: bool
children_age: str # "toddler", "school_age", "teenager"
noise_tolerance: str # "low", "medium", "high"
space_for_play: bool
other_pets: bool
climate: str # "cold", "moderate", "hot"
health_sensitivity: str = "medium"
barking_acceptance: str = None
def __post_init__(self):
"""在初始化後運行,用於設置派生值"""
if self.barking_acceptance is None:
self.barking_acceptance = self.noise_tolerance
# @staticmethod
# def calculate_breed_bonus(breed_info: dict, user_prefs: 'UserPreferences') -> float:
# """計算品種額外加分"""
# bonus = 0.0
# temperament = breed_info.get('Temperament', '').lower()
# # 1. 壽命加分(最高0.05)
# try:
# lifespan = breed_info.get('Lifespan', '10-12 years')
# years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
# longevity_bonus = min(0.05, (max(years) - 10) * 0.01)
# bonus += longevity_bonus
# except:
# pass
# # 2. 性格特徵加分(最高0.15)
# positive_traits = {
# 'friendly': 0.05,
# 'gentle': 0.05,
# 'patient': 0.05,
# 'intelligent': 0.04,
# 'adaptable': 0.04,
# 'affectionate': 0.04,
# 'easy-going': 0.03,
# 'calm': 0.03
# }
# negative_traits = {
# 'aggressive': -0.08,
# 'stubborn': -0.06,
# 'dominant': -0.06,
# 'aloof': -0.04,
# 'nervous': -0.05,
# 'protective': -0.04
# }
# personality_score = sum(value for trait, value in positive_traits.items() if trait in temperament)
# personality_score += sum(value for trait, value in negative_traits.items() if trait in temperament)
# bonus += max(-0.15, min(0.15, personality_score))
# # 3. 適應性加分(最高0.1)
# adaptability_bonus = 0.0
# if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
# adaptability_bonus += 0.05
# if 'adaptable' in temperament or 'versatile' in temperament:
# adaptability_bonus += 0.05
# bonus += min(0.1, adaptability_bonus)
# # 4. 家庭相容性(最高0.1)
# if user_prefs.has_children:
# family_traits = {
# 'good with children': 0.06,
# 'patient': 0.05,
# 'gentle': 0.05,
# 'tolerant': 0.04,
# 'playful': 0.03
# }
# unfriendly_traits = {
# 'aggressive': -0.08,
# 'nervous': -0.07,
# 'protective': -0.06,
# 'territorial': -0.05
# }
# # 年齡評估這樣能更細緻
# age_adjustments = {
# 'toddler': {'bonus_mult': 0.7, 'penalty_mult': 1.3},
# 'school_age': {'bonus_mult': 1.0, 'penalty_mult': 1.0},
# 'teenager': {'bonus_mult': 1.2, 'penalty_mult': 0.8}
# }
# adj = age_adjustments.get(user_prefs.children_age,
# {'bonus_mult': 1.0, 'penalty_mult': 1.0})
# family_bonus = sum(value for trait, value in family_traits.items()
# if trait in temperament) * adj['bonus_mult']
# family_penalty = sum(value for trait, value in unfriendly_traits.items()
# if trait in temperament) * adj['penalty_mult']
# bonus += min(0.15, max(-0.2, family_bonus + family_penalty))
# # 5. 專門技能加分(最高0.1)
# skill_bonus = 0.0
# special_abilities = {
# 'working': 0.03,
# 'herding': 0.03,
# 'hunting': 0.03,
# 'tracking': 0.03,
# 'agility': 0.02
# }
# for ability, value in special_abilities.items():
# if ability in temperament.lower():
# skill_bonus += value
# bonus += min(0.1, skill_bonus)
# return min(0.5, max(-0.25, bonus))
@staticmethod
def calculate_breed_bonus(breed_info: dict, user_prefs: UserPreferences) -> float:
"""
計算品種的額外加分,評估品種的特殊特徵對使用者需求的適配性。
這個函數考慮四個主要面向:
1. 壽命評估:考慮飼養的長期承諾
2. 性格特徵評估:評估品種性格與使用者需求的匹配度
3. 環境適應性:評估品種在特定生活環境中的表現
4. 家庭相容性:特別關注品種與家庭成員的互動
"""
bonus = 0.0
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
# 壽命評估 - 重新設計以反映更實際的考量
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
avg_years = float(years[0])
# 根據壽命長短給予不同程度的獎勵或懲罰
if avg_years < 8:
bonus -= 0.08 # 短壽命可能帶來情感負擔
elif avg_years < 10:
bonus -= 0.04 # 稍短壽命輕微降低評分
elif avg_years > 13:
bonus += 0.06 # 長壽命適度加分
elif avg_years > 15:
bonus += 0.08 # 特別長壽的品種獲得更多加分
except:
pass
# 性格特徵評估 - 擴充並細化評分標準
positive_traits = {
'friendly': 0.08, # 提高友善性的重要性
'gentle': 0.08, # 溫和性格更受歡迎
'patient': 0.07, # 耐心是重要特質
'intelligent': 0.06, # 聰明但不過分重要
'adaptable': 0.06, # 適應性佳的特質
'affectionate': 0.06, # 親密性很重要
'easy-going': 0.05, # 容易相處的性格
'calm': 0.05 # 冷靜的特質
}
negative_traits = {
'aggressive': -0.15, # 嚴重懲罰攻擊性
'stubborn': -0.10, # 固執性格不易處理
'dominant': -0.10, # 支配性可能造成問題
'aloof': -0.08, # 冷漠性格影響互動
'nervous': -0.08, # 緊張性格需要更多關注
'protective': -0.06 # 過度保護可能有風險
}
# 性格評分計算 - 加入累積效應
personality_score = 0
positive_count = 0
negative_count = 0
for trait, value in positive_traits.items():
if trait in temperament:
personality_score += value
positive_count += 1
for trait, value in negative_traits.items():
if trait in temperament:
personality_score += value
negative_count += 1
# 多重特徵的累積效應
if positive_count > 2:
personality_score *= (1 + (positive_count - 2) * 0.1)
if negative_count > 1:
personality_score *= (1 - (negative_count - 1) * 0.15)
bonus += max(-0.25, min(0.25, personality_score))
exercise_match = calculate_exercise_match(
breed_info.get('Exercise_Needs', 'MODERATE'),
user_prefs.exercise_time,
user_prefs.exercise_type
)
bonus += exercise_match
# 運動類型特性評估
exercise_traits = {
'active_training': {
'athletic': 0.10,
'energetic': 0.08,
'working': 0.08,
'intelligent': 0.06
},
'moderate_activity': {
'adaptable': 0.08,
'balanced': 0.06,
'versatile': 0.06,
'steady': 0.04
},
'light_walks': {
'calm': 0.08,
'gentle': 0.06,
'easy-going': 0.06,
'patient': 0.04
}
}
# 計算運動類型特性匹配度
if user_prefs.exercise_type in exercise_traits:
trait_score = 0
matched_traits = 0
for trait, value in exercise_traits[user_prefs.exercise_type].items():
if trait in temperament:
trait_score += value
matched_traits += 1
if matched_traits > 0:
bonus += min(0.15, trait_score * (1 + (matched_traits - 1) * 0.1))
# 適應性評估 - 根據具體環境給予更細緻的評分
adaptability_bonus = 0.0
if breed_info.get('Size') == "Small" and user_prefs.living_space == "apartment":
adaptability_bonus += 0.08 # 小型犬更適合公寓
# 環境適應性評估
if 'adaptable' in temperament or 'versatile' in temperament:
if user_prefs.living_space == "apartment":
adaptability_bonus += 0.10 # 適應性在公寓環境更重要
else:
adaptability_bonus += 0.05 # 其他環境仍有加分
# 氣候適應性
description = breed_info.get('Description', '').lower()
climate = user_prefs.climate
if climate == 'hot':
if 'heat tolerant' in description or 'warm climate' in description:
adaptability_bonus += 0.08
elif 'thick coat' in description or 'cold climate' in description:
adaptability_bonus -= 0.10
elif climate == 'cold':
if 'thick coat' in description or 'cold climate' in description:
adaptability_bonus += 0.08
elif 'heat tolerant' in description or 'short coat' in description:
adaptability_bonus -= 0.10
bonus += min(0.15, adaptability_bonus)
# 家庭相容性評估 - 特別關注有孩童的家庭
if user_prefs.has_children:
family_traits = {
'good with children': 0.12, # 提高與孩童相處的重要性
'patient': 0.10,
'gentle': 0.10,
'tolerant': 0.08,
'playful': 0.06
}
unfriendly_traits = {
'aggressive': -0.15, # 加重攻擊性的懲罰
'nervous': -0.12, # 緊張特質可能有風險
'protective': -0.10, # 過度保護性需要注意
'territorial': -0.08 # 地域性可能造成問題
}
# 根據孩童年齡調整評分權重
age_adjustments = {
'toddler': {
'bonus_mult': 0.6, # 降低正面特質的獎勵
'penalty_mult': 1.5 # 加重負面特質的懲罰
},
'school_age': {
'bonus_mult': 1.0,
'penalty_mult': 1.0
},
'teenager': {
'bonus_mult': 1.2, # 提高正面特質的獎勵
'penalty_mult': 0.8 # 降低負面特質的懲罰
}
}
adj = age_adjustments.get(user_prefs.children_age,
{'bonus_mult': 1.0, 'penalty_mult': 1.0})
# 計算家庭相容性分數
family_score = 0
for trait, value in family_traits.items():
if trait in temperament:
family_score += value * adj['bonus_mult']
for trait, value in unfriendly_traits.items():
if trait in temperament:
family_score += value * adj['penalty_mult']
bonus += min(0.20, max(-0.30, family_score))
# 確保總體加分在合理範圍內,但允許更大的變化
return min(0.5, max(-0.35, bonus))
# @staticmethod
# def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
# """計算額外的評估因素"""
# factors = {
# 'versatility': 0.0, # 多功能性
# 'trainability': 0.0, # 可訓練度
# 'energy_level': 0.0, # 能量水平
# 'grooming_needs': 0.0, # 美容需求
# 'social_needs': 0.0, # 社交需求
# 'weather_adaptability': 0.0 # 氣候適應性
# }
# temperament = breed_info.get('Temperament', '').lower()
# size = breed_info.get('Size', 'Medium')
# # 1. 多功能性評估
# versatile_traits = ['intelligent', 'adaptable', 'trainable', 'athletic']
# working_roles = ['working', 'herding', 'hunting', 'sporting', 'companion']
# trait_score = sum(0.2 for trait in versatile_traits if trait in temperament)
# role_score = sum(0.2 for role in working_roles if role in breed_info.get('Description', '').lower())
# factors['versatility'] = min(1.0, trait_score + role_score)
# # 2. 可訓練度評估
# trainable_traits = {
# 'intelligent': 0.3,
# 'eager to please': 0.3,
# 'trainable': 0.2,
# 'quick learner': 0.2
# }
# factors['trainability'] = min(1.0, sum(value for trait, value in trainable_traits.items()
# if trait in temperament))
# # 3. 能量水平評估
# exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
# energy_levels = {
# 'VERY HIGH': 1.0,
# 'HIGH': 0.8,
# 'MODERATE': 0.6,
# 'LOW': 0.4,
# 'VARIES': 0.6
# }
# factors['energy_level'] = energy_levels.get(exercise_needs, 0.6)
# # 4. 美容需求評估
# grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
# grooming_levels = {
# 'HIGH': 1.0,
# 'MODERATE': 0.6,
# 'LOW': 0.3
# }
# coat_penalty = 0.2 if any(term in breed_info.get('Description', '').lower()
# for term in ['long coat', 'double coat']) else 0
# factors['grooming_needs'] = min(1.0, grooming_levels.get(grooming_needs, 0.6) + coat_penalty)
# # 5. 社交需求評估
# social_traits = ['friendly', 'social', 'affectionate', 'people-oriented']
# antisocial_traits = ['independent', 'aloof', 'reserved']
# social_score = sum(0.25 for trait in social_traits if trait in temperament)
# antisocial_score = sum(-0.2 for trait in antisocial_traits if trait in temperament)
# factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# # 6. 氣候適應性評估
# climate_terms = {
# 'cold': ['thick coat', 'winter', 'cold climate'],
# 'hot': ['short coat', 'warm climate', 'heat tolerant'],
# 'moderate': ['adaptable', 'all climate']
# }
# climate_matches = sum(1 for term in climate_terms[user_prefs.climate]
# if term in breed_info.get('Description', '').lower())
# factors['weather_adaptability'] = min(1.0, climate_matches * 0.3 + 0.4) # 基礎分0.4
# return factors
@staticmethod
def calculate_additional_factors(breed_info: dict, user_prefs: 'UserPreferences') -> dict:
"""
計算額外的評估因素,結合品種特性與使用者需求的全面評估系統
此函數整合了:
1. 多功能性評估 - 品種的多樣化能力
2. 訓練性評估 - 學習和服從能力
3. 能量水平評估 - 活力和運動需求
4. 美容需求評估 - 護理和維護需求
5. 社交需求評估 - 與人互動的需求程度
6. 氣候適應性 - 對環境的適應能力
7. 運動類型匹配 - 與使用者運動習慣的契合度
8. 生活方式適配 - 與使用者日常生活的匹配度
"""
factors = {
'versatility': 0.0, # 多功能性
'trainability': 0.0, # 可訓練度
'energy_level': 0.0, # 能量水平
'grooming_needs': 0.0, # 美容需求
'social_needs': 0.0, # 社交需求
'weather_adaptability': 0.0,# 氣候適應性
'exercise_match': 0.0, # 運動匹配度
'lifestyle_fit': 0.0 # 生活方式適配度
}
temperament = breed_info.get('Temperament', '').lower()
description = breed_info.get('Description', '').lower()
size = breed_info.get('Size', 'Medium')
# 1. 多功能性評估 - 加強品種用途評估
versatile_traits = {
'intelligent': 0.25,
'adaptable': 0.25,
'trainable': 0.20,
'athletic': 0.15,
'versatile': 0.15
}
working_roles = {
'working': 0.20,
'herding': 0.15,
'hunting': 0.15,
'sporting': 0.15,
'companion': 0.10
}
# 計算特質分數
trait_score = sum(value for trait, value in versatile_traits.items()
if trait in temperament)
# 計算角色分數
role_score = sum(value for role, value in working_roles.items()
if role in description)
# 根據使用者需求調整多功能性評分
purpose_traits = {
'light_walks': ['calm', 'gentle', 'easy-going'],
'moderate_activity': ['adaptable', 'balanced', 'versatile'],
'active_training': ['intelligent', 'trainable', 'working']
}
if user_prefs.exercise_type in purpose_traits:
matching_traits = sum(1 for trait in purpose_traits[user_prefs.exercise_type]
if trait in temperament)
trait_score += matching_traits * 0.15
factors['versatility'] = min(1.0, trait_score + role_score)
# 2. 訓練性評估 - 考慮使用者經驗
trainable_traits = {
'intelligent': 0.3,
'eager to please': 0.3,
'trainable': 0.2,
'quick learner': 0.2,
'obedient': 0.2
}
base_trainability = sum(value for trait, value in trainable_traits.items()
if trait in temperament)
# 根據使用者經驗調整訓練性評分
experience_multipliers = {
'beginner': 1.2, # 新手更需要容易訓練的狗
'intermediate': 1.0,
'advanced': 0.8 # 專家能處理較難訓練的狗
}
factors['trainability'] = min(1.0, base_trainability *
experience_multipliers.get(user_prefs.experience_level, 1.0))
# 3. 能量水平評估 - 強化運動需求匹配
exercise_needs = breed_info.get('Exercise Needs', 'MODERATE').upper()
energy_levels = {
'VERY HIGH': {
'score': 1.0,
'min_exercise': 120,
'ideal_exercise': 150
},
'HIGH': {
'score': 0.8,
'min_exercise': 90,
'ideal_exercise': 120
},
'MODERATE': {
'score': 0.6,
'min_exercise': 60,
'ideal_exercise': 90
},
'LOW': {
'score': 0.4,
'min_exercise': 30,
'ideal_exercise': 60
}
}
breed_energy = energy_levels.get(exercise_needs, energy_levels['MODERATE'])
# 計算運動時間匹配度
if user_prefs.exercise_time >= breed_energy['ideal_exercise']:
energy_score = breed_energy['score']
else:
# 如果運動時間不足,按比例降低分數
deficit_ratio = max(0.4, user_prefs.exercise_time / breed_energy['ideal_exercise'])
energy_score = breed_energy['score'] * deficit_ratio
factors['energy_level'] = energy_score
# 4. 美容需求評估 - 加入更多毛髮類型考量
grooming_needs = breed_info.get('Grooming Needs', 'MODERATE').upper()
grooming_levels = {
'HIGH': 1.0,
'MODERATE': 0.6,
'LOW': 0.3
}
# 特殊毛髮類型評估
coat_adjustments = 0
if 'long coat' in description:
coat_adjustments += 0.2
if 'double coat' in description:
coat_adjustments += 0.15
if 'curly' in description:
coat_adjustments += 0.15
# 根據使用者承諾度調整
commitment_multipliers = {
'low': 1.5, # 低承諾度時加重美容需求的影響
'medium': 1.0,
'high': 0.8 # 高承諾度時降低美容需求的影響
}
base_grooming = grooming_levels.get(grooming_needs, 0.6) + coat_adjustments
factors['grooming_needs'] = min(1.0, base_grooming *
commitment_multipliers.get(user_prefs.grooming_commitment, 1.0))
# 5. 社交需求評估 - 加強家庭情況考量
social_traits = {
'friendly': 0.25,
'social': 0.25,
'affectionate': 0.20,
'people-oriented': 0.20
}
antisocial_traits = {
'independent': -0.20,
'aloof': -0.20,
'reserved': -0.15
}
social_score = sum(value for trait, value in social_traits.items()
if trait in temperament)
antisocial_score = sum(value for trait, value in antisocial_traits.items()
if trait in temperament)
# 家庭情況調整
if user_prefs.has_children:
child_friendly_bonus = 0.2 if 'good with children' in temperament else 0
social_score += child_friendly_bonus
factors['social_needs'] = min(1.0, max(0.0, social_score + antisocial_score))
# 6. 氣候適應性評估 - 更細緻的環境適應評估
climate_traits = {
'cold': {
'positive': ['thick coat', 'winter', 'cold climate'],
'negative': ['short coat', 'heat sensitive']
},
'hot': {
'positive': ['short coat', 'heat tolerant', 'warm climate'],
'negative': ['thick coat', 'cold climate']
},
'moderate': {
'positive': ['adaptable', 'all climate'],
'negative': []
}
}
climate_score = 0.4 # 基礎分數
if user_prefs.climate in climate_traits:
# 正面特質加分
climate_score += sum(0.2 for term in climate_traits[user_prefs.climate]['positive']
if term in description)
# 負面特質減分
climate_score -= sum(0.2 for term in climate_traits[user_prefs.climate]['negative']
if term in description)
factors['weather_adaptability'] = min(1.0, max(0.0, climate_score))
# 7. 運動類型匹配評估
exercise_type_traits = {
'light_walks': ['calm', 'gentle'],
'moderate_activity': ['adaptable', 'balanced'],
'active_training': ['athletic', 'energetic']
}
if user_prefs.exercise_type in exercise_type_traits:
match_score = sum(0.25 for trait in exercise_type_traits[user_prefs.exercise_type]
if trait in temperament)
factors['exercise_match'] = min(1.0, match_score + 0.5) # 基礎分0.5
# 8. 生活方式適配評估
lifestyle_score = 0.5 # 基礎分數
# 空間適配
if user_prefs.living_space == 'apartment':
if size == 'Small':
lifestyle_score += 0.2
elif size == 'Large':
lifestyle_score -= 0.2
elif user_prefs.living_space == 'house_large':
if size in ['Large', 'Giant']:
lifestyle_score += 0.2
# 時間可用性適配
time_availability_bonus = {
'limited': -0.1,
'moderate': 0,
'flexible': 0.1
}
lifestyle_score += time_availability_bonus.get(user_prefs.time_availability, 0)
factors['lifestyle_fit'] = min(1.0, max(0.0, lifestyle_score))
return factors
def calculate_compatibility_score(breed_info: dict, user_prefs: UserPreferences) -> dict:
"""計算品種與使用者條件的相容性分數的優化版本"""
try:
print(f"Processing breed: {breed_info.get('Breed', 'Unknown')}")
print(f"Breed info keys: {breed_info.keys()}")
if 'Size' not in breed_info:
print("Missing Size information")
raise KeyError("Size information missing")
# def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
# # 重新設計基礎分數矩陣
# base_scores = {
# "Small": {
# "apartment": 1.0, # 小型犬最適合公寓
# "house_small": 0.95, # 在大房子反而稍微降分
# "house_large": 0.85 # 可能浪費空間
# },
# "Medium": {
# "apartment": 0.45, # 中型犬在公寓明顯受限
# "house_small": 0.85,
# "house_large": 1.0
# },
# "Large": {
# "apartment": 0.15, # 大型犬在公寓極不適合
# "house_small": 0.60, # 在小房子仍然受限
# "house_large": 1.0
# },
# "Giant": {
# "apartment": 0.1, # 更嚴格的限制
# "house_small": 0.45,
# "house_large": 1.0
# }
# }
# # 取得基礎分數
# base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# # 運動需求調整更明顯
# exercise_adjustments = {
# "Very High": {
# "apartment": -0.25, # 在公寓更嚴重的懲罰
# "house_small": -0.15,
# "house_large": -0.05
# },
# "High": {
# "apartment": -0.20,
# "house_small": -0.10,
# "house_large": 0
# },
# "Moderate": {
# "apartment": -0.10,
# "house_small": -0.05,
# "house_large": 0
# },
# "Low": {
# "apartment": 0.05,
# "house_small": 0,
# "house_large": 0
# }
# }
# # 根據空間類型獲取對應的運動調整
# adjustment = exercise_adjustments.get(exercise_needs,
# exercise_adjustments["Moderate"])[living_space]
# # 院子獎勵也要根據犬種大小調整
# yard_bonus = 0
# if has_yard:
# if size in ["Large", "Giant"]:
# yard_bonus = 0.20 if living_space != "apartment" else 0.10
# elif size == "Medium":
# yard_bonus = 0.15 if living_space != "apartment" else 0.08
# else:
# yard_bonus = 0.10 if living_space != "apartment" else 0.05
# final_score = base_score + adjustment + yard_bonus
# return min(1.0, max(0.1, final_score))
def calculate_space_score(size: str, living_space: str, has_yard: bool, exercise_needs: str) -> float:
"""
優化的空間分數計算函數
主要改進:
1. 更均衡的基礎分數分配
2. 更細緻的空間需求評估
3. 強化運動需求與空間的關聯性
"""
# 重新設計基礎分數矩陣,降低普遍分數以增加區別度
base_scores = {
"Small": {
"apartment": 0.85, # 降低滿分機會
"house_small": 0.80, # 小型犬不應在大空間得到太高分數
"house_large": 0.75 # 避免小型犬總是得到最高分
},
"Medium": {
"apartment": 0.45, # 維持對公寓環境的限制
"house_small": 0.75, # 適中的分數
"house_large": 0.85 # 給予合理的獎勵
},
"Large": {
"apartment": 0.15, # 加重對大型犬在公寓的限制
"house_small": 0.65, # 中等適合度
"house_large": 0.90 # 最適合的環境
},
"Giant": {
"apartment": 0.10, # 更嚴格的限制
"house_small": 0.45, # 顯著的空間限制
"house_large": 0.95 # 最理想的配對
}
}
# 取得基礎分數
base_score = base_scores.get(size, base_scores["Medium"])[living_space]
# 運動需求相關的調整更加動態
exercise_adjustments = {
"Very High": {
"apartment": -0.25, # 加重在受限空間的懲罰
"house_small": -0.15,
"house_large": -0.05
},
"High": {
"apartment": -0.20,
"house_small": -0.10,
"house_large": 0
},
"Moderate": {
"apartment": -0.10,
"house_small": -0.05,
"house_large": 0
},
"Low": {
"apartment": 0.05, # 低運動需求在小空間反而有優勢
"house_small": 0,
"house_large": -0.05 # 輕微降低評分,因為空間可能過大
}
}
# 根據空間類型獲取運動需求調整
adjustment = exercise_adjustments.get(exercise_needs,
exercise_adjustments["Moderate"])[living_space]
# 院子效益根據品種大小和運動需求動態調整
if has_yard:
yard_bonus = {
"Giant": 0.20,
"Large": 0.15,
"Medium": 0.10,
"Small": 0.05
}.get(size, 0.10)
# 運動需求會影響院子的重要性
if exercise_needs in ["Very High", "High"]:
yard_bonus *= 1.2
elif exercise_needs == "Low":
yard_bonus *= 0.8
current_score = base_score + adjustment + yard_bonus
else:
current_score = base_score + adjustment
# 確保分數在合理範圍內,但避免極端值
return min(0.95, max(0.15, current_score))
# def calculate_exercise_score(breed_needs: str, exercise_time: int) -> float:
# """
# 優化的運動需求評分系統
# Parameters:
# breed_needs: str - 品種的運動需求等級
# exercise_time: int - 使用者可提供的運動時間(分鐘)
# 改進:
# 1. 更細緻的運動需求評估
# 2. 更合理的時間匹配計算
# 3. 避免極端評分
# """
# # 基礎運動需求評估
# exercise_needs = {
# 'VERY HIGH': {'min': 120, 'ideal': 150, 'max': 180},
# 'HIGH': {'min': 90, 'ideal': 120, 'max': 150},
# 'MODERATE': {'min': 45, 'ideal': 60, 'max': 90},
# 'LOW': {'min': 20, 'ideal': 30, 'max': 45},
# 'VARIES': {'min': 30, 'ideal': 60, 'max': 90}
# }
# breed_need = exercise_needs.get(breed_needs.strip().upper(), exercise_needs['MODERATE'])
# # 基礎時間匹配度計算
# if exercise_time >= breed_need['ideal']:
# if exercise_time > breed_need['max']:
# # 運動時間過長,稍微降低分數
# time_score = 0.9
# else:
# time_score = 1.0
# elif exercise_time >= breed_need['min']:
# # 在最小需求和理想需求之間,線性計算分數
# time_score = 0.7 + (exercise_time - breed_need['min']) / (breed_need['ideal'] - breed_need['min']) * 0.3
# else:
# # 運動時間不足,但仍根據比例給予分數
# time_score = max(0.3, 0.7 * (exercise_time / breed_need['min']))
# # 確保分數在合理範圍內
# return min(1.0, max(0.3, time_score))
def calculate_exercise_match(breed_needs: str, exercise_time: int, exercise_type: str) -> float:
"""
精確評估品種運動需求與使用者運動條件的匹配度
Parameters:
breed_needs: 品種的運動需求等級
exercise_time: 使用者能提供的運動時間(分鐘)
exercise_type: 使用者偏好的運動類型
Returns:
float: -0.2 到 0.2 之間的匹配分數
"""
# 定義更細緻的運動需求等級
exercise_levels = {
'VERY HIGH': {
'min': 120,
'ideal': 150,
'max': 180,
'intensity': 'high',
'sessions': 'multiple',
'preferred_types': ['active_training', 'intensive_exercise']
},
'HIGH': {
'min': 90,
'ideal': 120,
'max': 150,
'intensity': 'moderate_high',
'sessions': 'multiple',
'preferred_types': ['active_training', 'moderate_activity']
},
'MODERATE HIGH': {
'min': 70,
'ideal': 90,
'max': 120,
'intensity': 'moderate',
'sessions': 'flexible',
'preferred_types': ['moderate_activity', 'active_training']
},
'MODERATE': {
'min': 45,
'ideal': 60,
'max': 90,
'intensity': 'moderate',
'sessions': 'flexible',
'preferred_types': ['moderate_activity', 'light_walks']
},
'MODERATE LOW': {
'min': 30,
'ideal': 45,
'max': 70,
'intensity': 'light_moderate',
'sessions': 'flexible',
'preferred_types': ['light_walks', 'moderate_activity']
},
'LOW': {
'min': 15,
'ideal': 30,
'max': 45,
'intensity': 'light',
'sessions': 'single',
'preferred_types': ['light_walks']
}
}
# 獲取品種的運動需求配置
breed_level = exercise_levels.get(breed_needs.upper(), exercise_levels['MODERATE'])
# 計算時間匹配度(使用更平滑的評分曲線)
if exercise_time >= breed_level['ideal']:
if exercise_time > breed_level['max']:
# 運動時間過長,適度降分
time_score = 0.15 - (0.05 * (exercise_time - breed_level['max']) / 30)
else:
time_score = 0.15
elif exercise_time >= breed_level['min']:
# 在最小需求和理想需求之間,線性計算分數
time_ratio = (exercise_time - breed_level['min']) / (breed_level['ideal'] - breed_level['min'])
time_score = 0.05 + (time_ratio * 0.10)
else:
# 運動時間不足,根據差距程度扣分
time_ratio = max(0, exercise_time / breed_level['min'])
time_score = -0.15 * (1 - time_ratio)
# 運動類型匹配度評估
type_score = 0.0
if exercise_type in breed_level['preferred_types']:
type_score = 0.05
if exercise_type == breed_level['preferred_types'][0]:
type_score = 0.08 # 最佳匹配類型給予更高分數
return max(-0.2, min(0.2, time_score + type_score))
def calculate_grooming_score(breed_needs: str, user_commitment: str, breed_size: str) -> float:
"""
計算美容需求分數,強化美容維護需求與使用者承諾度的匹配評估。
這個函數特別注意品種大小對美容工作的影響,以及不同程度的美容需求對時間投入的要求。
"""
# 重新設計基礎分數矩陣,讓美容需求的差異更加明顯
base_scores = {
"High": {
"low": 0.20, # 高需求對低承諾極不合適,顯著降低初始分數
"medium": 0.65, # 中等承諾仍有挑戰
"high": 1.0 # 高承諾最適合
},
"Moderate": {
"low": 0.45, # 中等需求對低承諾有困難
"medium": 0.85, # 較好的匹配
"high": 0.95 # 高承諾會有餘力
},
"Low": {
"low": 0.90, # 低需求對低承諾很合適
"medium": 0.85, # 略微降低以反映可能過度投入
"high": 0.80 # 可能造成資源浪費
}
}
# 取得基礎分數
base_score = base_scores.get(breed_needs, base_scores["Moderate"])[user_commitment]
# 根據品種大小調整美容工作量
size_adjustments = {
"Giant": {
"low": -0.35, # 大型犬的美容工作量顯著增加
"medium": -0.20,
"high": -0.10
},
"Large": {
"low": -0.25,
"medium": -0.15,
"high": -0.05
},
"Medium": {
"low": -0.15,
"medium": -0.10,
"high": 0
},
"Small": {
"low": -0.10,
"medium": -0.05,
"high": 0
}
}
# 應用體型調整
size_adjustment = size_adjustments.get(breed_size, size_adjustments["Medium"])[user_commitment]
current_score = base_score + size_adjustment
# 特殊毛髮類型的額外調整
def get_coat_adjustment(breed_description: str, commitment: str) -> float:
"""
評估特殊毛髮類型所需的額外維護工作
"""
adjustments = 0
# 長毛品種需要更多維護
if 'long coat' in breed_description.lower():
coat_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
adjustments += coat_penalties[commitment]
# 雙層毛的品種掉毛量更大
if 'double coat' in breed_description.lower():
double_coat_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += double_coat_penalties[commitment]
# 捲毛品種需要定期專業修剪
if 'curly' in breed_description.lower():
curly_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
adjustments += curly_penalties[commitment]
return adjustments
# 季節性考量
def get_seasonal_adjustment(breed_description: str, commitment: str) -> float:
"""
評估季節性掉毛對美容需求的影響
"""
if 'seasonal shedding' in breed_description.lower():
seasonal_penalties = {
'low': -0.15,
'medium': -0.10,
'high': -0.05
}
return seasonal_penalties[commitment]
return 0
# 專業美容需求評估
def get_professional_grooming_adjustment(breed_description: str, commitment: str) -> float:
"""
評估需要專業美容服務的影響
"""
if 'professional grooming' in breed_description.lower():
grooming_penalties = {
'low': -0.20,
'medium': -0.15,
'high': -0.05
}
return grooming_penalties[commitment]
return 0
# 應用所有額外調整
# 由於這些是示例調整,實際使用時需要根據品種描述信息進行調整
coat_adjustment = get_coat_adjustment("", user_commitment)
seasonal_adjustment = get_seasonal_adjustment("", user_commitment)
professional_adjustment = get_professional_grooming_adjustment("", user_commitment)
final_score = current_score + coat_adjustment + seasonal_adjustment + professional_adjustment
# 確保分數在有意義的範圍內,但允許更大的差異
return max(0.1, min(1.0, final_score))
def calculate_experience_score(care_level: str, user_experience: str, temperament: str) -> float:
"""
計算使用者經驗與品種需求的匹配分數,加強經驗等級的影響力
重要改進:
1. 擴大基礎分數差異
2. 加重困難特徵的懲罰
3. 更細緻的品種特性評估
"""
# 基礎分數矩陣 - 大幅擴大不同經驗等級的分數差異
base_scores = {
"High": {
"beginner": 0.10, # 降低起始分,高難度品種對新手幾乎不推薦
"intermediate": 0.60, # 中級玩家仍需謹慎
"advanced": 1.0 # 資深者能完全勝任
},
"Moderate": {
"beginner": 0.35, # 適中難度對新手仍具挑戰
"intermediate": 0.80, # 中級玩家較適合
"advanced": 1.0 # 資深者完全勝任
},
"Low": {
"beginner": 0.90, # 新手友善品種
"intermediate": 0.95, # 中級玩家幾乎完全勝任
"advanced": 1.0 # 資深者完全勝任
}
}
# 取得基礎分數
score = base_scores.get(care_level, base_scores["Moderate"])[user_experience]
temperament_lower = temperament.lower()
temperament_adjustments = 0.0
# 根據經驗等級設定不同的特徵評估標準
if user_experience == "beginner":
# 新手不適合的特徵 - 更嚴格的懲罰
difficult_traits = {
'stubborn': -0.30, # 固執性格嚴重影響新手
'independent': -0.25, # 獨立性高的品種不適合新手
'dominant': -0.25, # 支配性強的品種需要經驗處理
'strong-willed': -0.20, # 強勢性格需要技巧管理
'protective': -0.20, # 保護性強需要適當訓練
'aloof': -0.15, # 冷漠性格需要耐心培養
'energetic': -0.15, # 活潑好動需要經驗引導
'aggressive': -0.35 # 攻擊傾向極不適合新手
}
# 新手友善的特徵 - 適度的獎勵
easy_traits = {
'gentle': 0.05, # 溫和性格適合新手
'friendly': 0.05, # 友善性格容易相處
'eager to please': 0.08, # 願意服從較容易訓練
'patient': 0.05, # 耐心的特質有助於建立關係
'adaptable': 0.05, # 適應性強較容易照顧
'calm': 0.06 # 冷靜的性格較好掌握
}
# 計算特徵調整
for trait, penalty in difficult_traits.items():
if trait in temperament_lower:
temperament_adjustments += penalty
for trait, bonus in easy_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 品種類型特殊評估
if 'terrier' in temperament_lower:
temperament_adjustments -= 0.20 # 梗類犬種通常不適合新手
elif 'working' in temperament_lower:
temperament_adjustments -= 0.25 # 工作犬需要經驗豐富的主人
elif 'guard' in temperament_lower:
temperament_adjustments -= 0.25 # 護衛犬需要專業訓練
elif user_experience == "intermediate":
# 中級玩家的特徵評估
moderate_traits = {
'stubborn': -0.15, # 仍然需要注意,但懲罰較輕
'independent': -0.10,
'intelligent': 0.08, # 聰明的特質可以好好發揮
'athletic': 0.06, # 運動能力可以適當訓練
'versatile': 0.07, # 多功能性可以開發
'protective': -0.08 # 保護性仍需注意
}
for trait, adjustment in moderate_traits.items():
if trait in temperament_lower:
temperament_adjustments += adjustment
else: # advanced
# 資深玩家能夠應對挑戰性特徵
advanced_traits = {
'stubborn': 0.05, # 困難特徵反而成為優勢
'independent': 0.05,
'intelligent': 0.10,
'protective': 0.05,
'strong-willed': 0.05
}
for trait, bonus in advanced_traits.items():
if trait in temperament_lower:
temperament_adjustments += bonus
# 確保最終分數範圍更大,讓差異更明顯
final_score = max(0.05, min(1.0, score + temperament_adjustments))
return final_score
def calculate_health_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種健康分數,加強健康問題的影響力和與使用者敏感度的連結
重要改進:
1. 根據使用者的健康敏感度調整分數
2. 更嚴格的健康問題評估
3. 考慮多重健康問題的累積效應
4. 加入遺傳疾病的特別考量
"""
if breed_name not in breed_health_info:
return 0.5
health_notes = breed_health_info[breed_name]['health_notes'].lower()
# 嚴重健康問題 - 加重扣分
severe_conditions = {
'hip dysplasia': -0.25, # 髖關節發育不良,影響生活品質
'heart disease': -0.25, # 心臟疾病,需要長期治療
'progressive retinal atrophy': -0.20, # 進行性視網膜萎縮,導致失明
'bloat': -0.22, # 胃扭轉,致命風險
'epilepsy': -0.20, # 癲癇,需要長期藥物控制
'degenerative myelopathy': -0.20, # 脊髓退化,影響行動能力
'von willebrand disease': -0.18 # 血液凝固障礙
}
# 中度健康問題 - 適度扣分
moderate_conditions = {
'allergies': -0.12, # 過敏問題,需要持續關注
'eye problems': -0.15, # 眼睛問題,可能需要手術
'joint problems': -0.15, # 關節問題,影響運動能力
'hypothyroidism': -0.12, # 甲狀腺功能低下,需要藥物治療
'ear infections': -0.10, # 耳道感染,需要定期清理
'skin issues': -0.12 # 皮膚問題,需要特殊護理
}
# 輕微健康問題 - 輕微扣分
minor_conditions = {
'dental issues': -0.08, # 牙齒問題,需要定期護理
'weight gain tendency': -0.08, # 易胖體質,需要控制飲食
'minor allergies': -0.06, # 輕微過敏,可控制
'seasonal allergies': -0.06 # 季節性過敏
}
# 計算基礎健康分數
health_score = 1.0
# 健康問題累積效應計算
condition_counts = {
'severe': 0,
'moderate': 0,
'minor': 0
}
# 計算各等級健康問題的數量和影響
for condition, penalty in severe_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['severe'] += 1
for condition, penalty in moderate_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['moderate'] += 1
for condition, penalty in minor_conditions.items():
if condition in health_notes:
health_score += penalty
condition_counts['minor'] += 1
# 多重問題的額外懲罰(累積效應)
if condition_counts['severe'] > 1:
health_score *= (0.85 ** (condition_counts['severe'] - 1))
if condition_counts['moderate'] > 2:
health_score *= (0.90 ** (condition_counts['moderate'] - 2))
# 根據使用者健康敏感度調整分數
sensitivity_multipliers = {
'low': 1.1, # 較不在意健康問題
'medium': 1.0, # 標準評估
'high': 0.85 # 非常注重健康問題
}
health_score *= sensitivity_multipliers.get(user_prefs.health_sensitivity, 1.0)
# 壽命影響評估
try:
lifespan = breed_health_info[breed_name].get('average_lifespan', '10-12')
years = float(lifespan.split('-')[0])
if years < 8:
health_score *= 0.85 # 短壽命顯著降低分數
elif years < 10:
health_score *= 0.92 # 較短壽命輕微降低分數
elif years > 13:
health_score *= 1.1 # 長壽命適度加分
except:
pass
# 特殊健康優勢
if 'generally healthy' in health_notes or 'hardy breed' in health_notes:
health_score *= 1.15
elif 'robust health' in health_notes or 'few health issues' in health_notes:
health_score *= 1.1
# 確保分數在合理範圍內,但允許更大的分數差異
return max(0.1, min(1.0, health_score))
def calculate_noise_score(breed_name: str, user_prefs: UserPreferences) -> float:
"""
計算品種噪音分數,特別加強噪音程度與生活環境的關聯性評估
"""
if breed_name not in breed_noise_info:
return 0.5
noise_info = breed_noise_info[breed_name]
noise_level = noise_info['noise_level'].lower()
noise_notes = noise_info['noise_notes'].lower()
# 重新設計基礎噪音分數矩陣,考慮不同情境下的接受度
base_scores = {
'low': {
'low': 1.0, # 安靜的狗對低容忍完美匹配
'medium': 0.95, # 安靜的狗對一般容忍很好
'high': 0.90 # 安靜的狗對高容忍當然可以
},
'medium': {
'low': 0.60, # 一般吠叫對低容忍較困難
'medium': 0.90, # 一般吠叫對一般容忍可接受
'high': 0.95 # 一般吠叫對高容忍很好
},
'high': {
'low': 0.25, # 愛叫的狗對低容忍極不適合
'medium': 0.65, # 愛叫的狗對一般容忍有挑戰
'high': 0.90 # 愛叫的狗對高容忍可以接受
},
'varies': {
'low': 0.50, # 不確定的情況對低容忍風險較大
'medium': 0.75, # 不確定的情況對一般容忍可嘗試
'high': 0.85 # 不確定的情況對高容忍問題較小
}
}
# 取得基礎分數
base_score = base_scores.get(noise_level, {'low': 0.6, 'medium': 0.75, 'high': 0.85})[user_prefs.noise_tolerance]
# 吠叫原因評估,根據環境調整懲罰程度
barking_penalties = {
'separation anxiety': {
'apartment': -0.30, # 在公寓對鄰居影響更大
'house_small': -0.25,
'house_large': -0.20
},
'excessive barking': {
'apartment': -0.25,
'house_small': -0.20,
'house_large': -0.15
},
'territorial': {
'apartment': -0.20, # 在公寓更容易被觸發
'house_small': -0.15,
'house_large': -0.10
},
'alert barking': {
'apartment': -0.15, # 公寓環境刺激較多
'house_small': -0.10,
'house_large': -0.08
},
'attention seeking': {
'apartment': -0.15,
'house_small': -0.12,
'house_large': -0.10
}
}
# 計算環境相關的吠叫懲罰
living_space = user_prefs.living_space
barking_penalty = 0
for trigger, penalties in barking_penalties.items():
if trigger in noise_notes:
barking_penalty += penalties.get(living_space, -0.15)
# 特殊情況評估
special_adjustments = 0
if user_prefs.has_children:
# 孩童年齡相關調整
child_age_adjustments = {
'toddler': {
'high': -0.20, # 幼童對吵鬧更敏感
'medium': -0.15,
'low': -0.05
},
'school_age': {
'high': -0.15,
'medium': -0.10,
'low': -0.05
},
'teenager': {
'high': -0.10,
'medium': -0.05,
'low': -0.02
}
}
# 根據孩童年齡和噪音等級調整
age_adj = child_age_adjustments.get(user_prefs.children_age,
child_age_adjustments['school_age'])
special_adjustments += age_adj.get(noise_level, -0.10)
# 訓練性補償評估
trainability_bonus = 0
if 'responds well to training' in noise_notes:
trainability_bonus = 0.12
elif 'can be trained' in noise_notes:
trainability_bonus = 0.08
elif 'difficult to train' in noise_notes:
trainability_bonus = 0.02
# 夜間吠叫特別考量
if 'night barking' in noise_notes or 'howls' in noise_notes:
if user_prefs.living_space == 'apartment':
special_adjustments -= 0.15
elif user_prefs.living_space == 'house_small':
special_adjustments -= 0.10
else:
special_adjustments -= 0.05
# 計算最終分數,確保更大的分數範圍
final_score = base_score + barking_penalty + special_adjustments + trainability_bonus
return max(0.1, min(1.0, final_score))
# 1. 計算基礎分數
print("\n=== 開始計算品種相容性分數 ===")
print(f"處理品種: {breed_info.get('Breed', 'Unknown')}")
print(f"品種信息: {breed_info}")
print(f"使用者偏好: {vars(user_prefs)}")
# 計算所有基礎分數並整合到字典中
scores = {
'space': calculate_space_score(
breed_info['Size'],
user_prefs.living_space,
user_prefs.yard_access != 'no_yard',
breed_info.get('Exercise Needs', 'Moderate')
),
'exercise': calculate_exercise_score(
breed_info.get('Exercise Needs', 'Moderate'),
user_prefs.exercise_time
),
'grooming': calculate_grooming_score(
breed_info.get('Grooming Needs', 'Moderate'),
user_prefs.grooming_commitment.lower(),
breed_info['Size']
),
'experience': calculate_experience_score(
breed_info.get('Care Level', 'Moderate'),
user_prefs.experience_level,
breed_info.get('Temperament', '')
),
'health': calculate_health_score(
breed_info.get('Breed', ''),
user_prefs
),
'noise': calculate_noise_score(
breed_info.get('Breed', ''),
user_prefs
)
}
# 檢查關鍵不適配情況
critical_issues = check_critical_matches(scores, user_prefs)
if critical_issues['has_critical']:
return apply_critical_penalty(scores, critical_issues)
# 計算環境適應性加成
adaptability_bonus = calculate_environmental_fit(breed_info, user_prefs)
# 計算最終加權分數
final_score = calculate_final_weighted_score(
scores=scores,
user_prefs=user_prefs,
breed_info=breed_info,
adaptability_bonus=adaptability_bonus
)
# 更新最終結果
scores.update({
'overall': final_score,
'adaptability_bonus': adaptability_bonus
})
return scores
except Exception as e:
print(f"\n!!!!! 發生嚴重錯誤 !!!!!")
print(f"錯誤類型: {type(e).__name__}")
print(f"錯誤訊息: {str(e)}")
print(f"完整錯誤追蹤:")
print(traceback.format_exc())
return {k: 0.6 for k in ['space', 'exercise', 'grooming', 'experience', 'health', 'noise', 'overall']}
def check_critical_matches(scores: dict, user_prefs: UserPreferences) -> dict:
"""評估是否存在極端不適配的情況"""
critical_issues = {
'has_critical': False,
'reasons': []
}
# 檢查極端不適配情況
if scores['space'] < 0.3:
critical_issues['has_critical'] = True
critical_issues['reasons'].append('space_incompatible')
if scores['noise'] < 0.3 and user_prefs.living_space == 'apartment':
critical_issues['has_critical'] = True
critical_issues['reasons'].append('noise_incompatible')
if scores['experience'] < 0.3 and user_prefs.experience_level == 'beginner':
critical_issues['has_critical'] = True
critical_issues['reasons'].append('too_challenging')
return critical_issues
def apply_critical_penalty(scores: dict, critical_issues: dict) -> dict:
"""
當發現關鍵不適配時,調整分數
首先計算基礎整體分數,然後根據不同的關鍵問題應用懲罰係數
"""
penalized_scores = scores.copy()
penalty_factor = 0.6 # 基礎懲罰因子
# 先計算基礎整體分數(使用簡單平均)
base_overall = sum(scores.values()) / len(scores)
penalized_scores['overall'] = base_overall
# 根據不同的關鍵問題應用懲罰
for reason in critical_issues['reasons']:
if reason == 'space_incompatible':
penalized_scores['overall'] *= penalty_factor
penalized_scores['space'] *= penalty_factor
elif reason == 'noise_incompatible':
penalized_scores['overall'] *= penalty_factor
penalized_scores['noise'] *= penalty_factor
elif reason == 'too_challenging':
penalized_scores['overall'] *= penalty_factor
penalized_scores['experience'] *= penalty_factor
# 確保所有分數都在有效範圍內
for key in penalized_scores:
penalized_scores[key] = max(0.1, min(1.0, penalized_scores[key]))
return penalized_scores
def calculate_environmental_fit(breed_info: dict, user_prefs: UserPreferences) -> float:
"""計算品種與環境的適應性加成"""
adaptability_score = 0.0
description = breed_info.get('Description', '').lower()
temperament = breed_info.get('Temperament', '').lower()
# 環境適應性評估
if user_prefs.living_space == 'apartment':
if 'adaptable' in temperament or 'apartment' in description:
adaptability_score += 0.1
if breed_info.get('Size') == 'Small':
adaptability_score += 0.05
elif user_prefs.living_space == 'house_large':
if 'active' in temperament or 'energetic' in description:
adaptability_score += 0.1
# 氣候適應性
if user_prefs.climate in description or user_prefs.climate in temperament:
adaptability_score += 0.05
return min(0.2, adaptability_score)
def calculate_dynamic_weights(user_prefs: UserPreferences, breed_info: dict) -> dict:
"""
根據使用者條件動態計算權重
這個系統會根據具體情況調整各個評分項目的重要性
"""
weights = {
'space': 0.25, # 降低基礎空間權重
'exercise': 0.20,
'grooming': 0.15,
'experience': 0.15,
'health': 0.15,
'noise': 0.10
}
# 運動時間對權重的影響
if user_prefs.exercise_time > 150:
weights['exercise'] *= 1.4
weights['space'] *= 0.8
elif user_prefs.exercise_time < 30:
weights['exercise'] *= 0.8
weights['health'] *= 1.2
# 居住環境對權重的影響
if user_prefs.living_space == 'apartment':
weights['noise'] *= 1.3
weights['space'] *= 1.2
elif user_prefs.living_space == 'house_large':
weights['exercise'] *= 1.2
weights['space'] *= 0.8
# 經驗等級對權重的影響
if user_prefs.experience_level == 'beginner':
weights['experience'] *= 1.3
weights['health'] *= 1.2
# 有孩童時的權重調整
if user_prefs.has_children:
if user_prefs.children_age == 'toddler':
weights['temperament'] = 0.20 # 新增性格權重
weights['space'] *= 0.8
# 重新正規化權重
total = sum(weights.values())
return {k: v/total for k, v in weights.items()}
def calculate_final_weighted_score(
scores: dict,
user_prefs: UserPreferences,
breed_info: dict,
adaptability_bonus: float
) -> float:
"""
整合動態權重的最終分數計算系統
"""
# 第一步:計算動態權重
weights = calculate_dynamic_weights(user_prefs, breed_info) # 內部函數
# 第二步:計算基礎加權分數
weighted_base = sum(score * weights[category] for category, score in scores.items())
# 第三步:計算品種特性加成
breed_bonus = calculate_breed_bonus(breed_info, user_prefs)
# 第四步:最終分數計算
final_score = (weighted_base * 0.70) + (breed_bonus * 0.20) + (adaptability_bonus * 0.10)
# 第五步:分數轉換
return amplify_score_extreme(final_score)
def amplify_score_extreme(score: float) -> float:
"""
使用S型曲線進行分數轉換,加大差異
"""
# 基礎範圍
base_min = 0.65
base_max = 0.95
# 正規化
normalized = (score - 0.5) / 0.5
# S型曲線轉換
sigmoid = 1 / (1 + math.exp(-normalized * 4))
# 映射到目標範圍
final = base_min + (base_max - base_min) * sigmoid
return round(min(base_max, max(base_min, final)), 4) |