Spaces:
Sleeping
Sleeping
File size: 33,528 Bytes
555b707 a1121ae d26f860 a010ca5 d26f860 77a3b9d d26f860 dad60e5 77a3b9d dbb9e38 77a3b9d dad60e5 77a3b9d d26f860 77a3b9d dad60e5 77a3b9d d26f860 77a3b9d d26f860 f00b13a d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 77a3b9d d26f860 afc9d6d d26f860 f2ab00b d26f860 77a3b9d d26f860 f2ab00b d26f860 afc9d6d d26f860 afc9d6d d26f860 afc9d6d d26f860 afc9d6d d26f860 77a3b9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 |
import sqlite3
import traceback
from typing import List, Dict
from breed_health_info import breed_health_info, default_health_note
from breed_noise_info import breed_noise_info
from dog_database import get_dog_description
from scoring_calculation_system import UserPreferences, calculate_compatibility_score
def format_recommendation_html(recommendations: List[Dict], is_description_search: bool = False) -> str:
"""將推薦結果格式化為HTML"""
html_content = """
<style>
.progress {
transition: all 0.3s ease-in-out;
border-radius: 4px;
height: 12px;
}
.progress-bar {
background-color: #f5f5f5;
border-radius: 4px;
overflow: hidden;
position: relative;
}
.score-item {
margin: 10px 0;
}
.percentage {
margin-left: 8px;
font-weight: 500;
}
</style>
<div class='recommendations-container'>"""
def _convert_to_display_score(score: float, score_type: str = None) -> int:
"""
更改為生成更明顯差異的顯示分數
"""
try:
# 基礎分數轉換(保持相對關係但擴大差異)
if score_type == 'bonus': # Breed Bonus 使用不同的轉換邏輯
base_score = 35 + (score * 60) # 35-95 範圍,差異更大
else:
# 其他類型的分數轉換
if score <= 0.3:
base_score = 40 + (score * 45) # 40-53.5 範圍
elif score <= 0.6:
base_score = 55 + ((score - 0.3) * 55) # 55-71.5 範圍
elif score <= 0.8:
base_score = 72 + ((score - 0.6) * 60) # 72-84 範圍
else:
base_score = 85 + ((score - 0.8) * 50) # 85-95 範圍
# 添加不規則的微調,但保持相對關係
import random
if score_type == 'bonus':
adjustment = random.uniform(-2, 2)
else:
# 根據分數範圍決定調整幅度
if score > 0.8:
adjustment = random.uniform(-3, 3)
elif score > 0.6:
adjustment = random.uniform(-4, 4)
else:
adjustment = random.uniform(-2, 2)
final_score = base_score + adjustment
# 確保最終分數在合理範圍內並避免5的倍數
final_score = min(95, max(40, final_score))
rounded_score = round(final_score)
if rounded_score % 5 == 0:
rounded_score += random.choice([-1, 1])
return rounded_score
except Exception as e:
print(f"Error in convert_to_display_score: {str(e)}")
return 70
def _generate_progress_bar(score: float, score_type: str = None) -> dict:
"""
生成進度條的寬度和顏色
Parameters:
score: 原始分數 (0-1 之間的浮點數)
score_type: 分數類型,用於特殊處理某些類型的分數
Returns:
dict: 包含寬度和顏色的字典
"""
# 計算寬度
if score_type == 'bonus':
# Breed Bonus 特殊的計算方式
width = min(100, max(5, 10 + (score * 300)))
else:
# 一般分數的計算
if score >= 0.9:
width = 90 + (score - 0.9) * 100
elif score >= 0.7:
width = 70 + (score - 0.7) * 100
elif score >= 0.5:
width = 40 + (score - 0.5) * 150
elif score >= 0.3:
width = 20 + (score - 0.3) * 100
else:
width = max(5, score * 66.7)
# 根據分數決定顏色
if score >= 0.9:
color = '#68b36b' # 高分段柔和綠
elif score >= 0.7:
color = '#9bcf74' # 中高分段略黃綠
elif score >= 0.5:
color = '#d4d880' # 中等分段黃綠
elif score >= 0.3:
color = '#e3b583' # 偏低分段柔和橘
else:
color = '#e9a098' # 低分段暖紅粉
return {
'width': width,
'color': color
}
for rec in recommendations:
breed = rec['breed']
scores = rec['scores']
info = rec['info']
rank = rec.get('rank', 0)
final_score = rec.get('final_score', scores['overall'])
bonus_score = rec.get('bonus_score', 0)
if is_description_search:
display_scores = {
'space': _convert_to_display_score(scores['space'], 'space'),
'exercise': _convert_to_display_score(scores['exercise'], 'exercise'),
'grooming': _convert_to_display_score(scores['grooming'], 'grooming'),
'experience': _convert_to_display_score(scores['experience'], 'experience'),
'noise': _convert_to_display_score(scores['noise'], 'noise')
}
else:
display_scores = scores # 圖片識別使用原始分數
progress_bars = {}
for metric in ['space', 'exercise', 'grooming', 'experience', 'noise']:
if metric in scores:
bar_data = _generate_progress_bar(scores[metric], metric)
progress_bars[metric] = {
'style': f"width: {bar_data['width']}%; background-color: {bar_data['color']};"
}
# bonus
if bonus_score > 0:
bonus_data = _generate_progress_bar(bonus_score, 'bonus')
progress_bars['bonus'] = {
'style': f"width: {bonus_data['width']}%; background-color: {bonus_data['color']};"
}
health_info = breed_health_info.get(breed, {"health_notes": default_health_note})
noise_info = breed_noise_info.get(breed, {
"noise_notes": "Noise information not available",
"noise_level": "Unknown",
"source": "N/A"
})
# 解析噪音資訊
noise_notes = noise_info.get('noise_notes', '').split('\n')
noise_characteristics = []
barking_triggers = []
noise_level = ''
current_section = None
for line in noise_notes:
line = line.strip()
if 'Typical noise characteristics:' in line:
current_section = 'characteristics'
elif 'Noise level:' in line:
noise_level = line.replace('Noise level:', '').strip()
elif 'Barking triggers:' in line:
current_section = 'triggers'
elif line.startswith('•'):
if current_section == 'characteristics':
noise_characteristics.append(line[1:].strip())
elif current_section == 'triggers':
barking_triggers.append(line[1:].strip())
# 生成特徵和觸發因素的HTML
noise_characteristics_html = '\n'.join([f'<li>{item}</li>' for item in noise_characteristics])
barking_triggers_html = '\n'.join([f'<li>{item}</li>' for item in barking_triggers])
# 處理健康資訊
health_notes = health_info.get('health_notes', '').split('\n')
health_considerations = []
health_screenings = []
current_section = None
for line in health_notes:
line = line.strip()
if 'Common breed-specific health considerations' in line:
current_section = 'considerations'
elif 'Recommended health screenings:' in line:
current_section = 'screenings'
elif line.startswith('•'):
if current_section == 'considerations':
health_considerations.append(line[1:].strip())
elif current_section == 'screenings':
health_screenings.append(line[1:].strip())
health_considerations_html = '\n'.join([f'<li>{item}</li>' for item in health_considerations])
health_screenings_html = '\n'.join([f'<li>{item}</li>' for item in health_screenings])
# 獎勵原因計算
bonus_reasons = []
temperament = info.get('Temperament', '').lower()
if any(trait in temperament for trait in ['friendly', 'gentle', 'affectionate']):
bonus_reasons.append("Positive temperament traits")
if info.get('Good with Children') == 'Yes':
bonus_reasons.append("Excellent with children")
try:
lifespan = info.get('Lifespan', '10-12 years')
years = int(lifespan.split('-')[0])
if years >= 12:
bonus_reasons.append("Above-average lifespan")
except:
pass
html_content += f"""
<div class="dog-info-card recommendation-card">
<div class="breed-info">
<h2 class="section-title">
<span class="icon">🏆</span> #{rank} {breed.replace('_', ' ')}
<span class="score-badge">
Overall Match: {final_score*100:.1f}%
</span>
</h2>
<div class="compatibility-scores">
<!-- 空間相容性評分 -->
<div class="score-item">
<span class="label">
Space Compatibility:
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Space Compatibility Score:</strong><br>
• Evaluates how well the breed adapts to your living environment<br>
• Considers if your home (apartment/house) and yard access suit the breed’s size<br>
• Higher score means the breed fits well in your available space.
</span>
</span>
</span>
<div class="progress-bar">
<div class="progress" style="{progress_bars.get('space', {'style': 'width: 0%; background-color: #e74c3c;'})['style']}"></div>
</div>
<span class="percentage">{display_scores['space'] if is_description_search else scores.get('space', 0)*100:.1f}%</span>
</div>
<!-- 運動匹配度評分 -->
<div class="score-item">
<span class="label">
Exercise Match:
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Exercise Match Score:</strong><br>
• Based on your daily exercise time and type<br>
• Compares your activity level to the breed’s exercise needs<br>
• Higher score means your routine aligns well with the breed’s energy requirements.
</span>
</span>
</span>
<div class="progress-bar">
<div class="progress" style="{progress_bars.get('exercise', {'style': 'width: 0%; background-color: #e74c3c;'})['style']}"></div>
</div>
<span class="percentage">{display_scores['exercise'] if is_description_search else scores.get('exercise', 0)*100:.1f}%</span>
</div>
<!-- 美容需求匹配度評分 -->
<div class="score-item">
<span class="label">
Grooming Match:
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Grooming Match Score:</strong><br>
• Evaluates breed’s grooming needs (coat care, trimming, brushing)<br>
• Compares these requirements with your grooming commitment level<br>
• Higher score means the breed’s grooming needs fit your willingness and capability.
</span>
</span>
</span>
<div class="progress-bar">
<div class="progress" style="{progress_bars.get('grooming', {'style': 'width: 0%; background-color: #e74c3c;'})['style']}"></div>
</div>
<span class="percentage">{display_scores['grooming'] if is_description_search else scores.get('grooming', 0)*100:.1f}%</span>
</div>
<!-- 經驗需求匹配度評分 -->
<div class="score-item">
<span class="label">
Experience Match:
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Experience Match Score:</strong><br>
• Based on your dog-owning experience level<br>
• Considers breed’s training complexity, temperament, and handling difficulty<br>
• Higher score means the breed is more suitable for your experience level.
</span>
</span>
</span>
<div class="progress-bar">
<div class="progress" style="{progress_bars.get('experience', {'style': 'width: 0%; background-color: #e74c3c;'})['style']}"></div>
</div>
<span class="percentage">{display_scores['experience'] if is_description_search else scores.get('experience', 0)*100:.1f}%</span>
</div>
<!-- 噪音相容性評分 -->
<div class="score-item">
<span class="label">
Noise Compatibility:
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Noise Compatibility Score:</strong><br>
• Based on your noise tolerance preference<br>
• Considers breed's typical noise level and barking tendencies<br>
• Accounts for living environment and sensitivity to noise.
</span>
</span>
</span>
<div class="progress-bar">
<div class="progress" style="{progress_bars.get('noise', {'style': 'width: 0%; background-color: #e74c3c;'})['style']}"></div>
</div>
<span class="percentage">{display_scores['noise'] if is_description_search else scores.get('noise', 0)*100:.1f}%</span>
</div>
{f'''
<div class="score-item bonus-score">
<span class="label">
Breed Bonus:
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Breed Bonus Points:</strong><br>
• {('<br>• '.join(bonus_reasons)) if bonus_reasons else 'No additional bonus points'}<br>
<br>
<strong>Bonus Factors Include:</strong><br>
• Friendly temperament<br>
• Child compatibility<br>
• Longer lifespan<br>
• Living space adaptability
</span>
</span>
</span>
<div class="progress-bar">
<div class="progress" style="{progress_bars['bonus']['style']}"></div>
</div>
<span class="percentage">{bonus_score*100:.1f}%</span>
</div>
''' if bonus_score > 0 else ''}
</div>
<div class="breed-details-section">
<h3 class="subsection-title">
<span class="icon">📋</span> Breed Details
</h3>
<div class="details-grid">
<div class="detail-item">
<span class="tooltip">
<span class="icon">📏</span>
<span class="label">Size:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Size Categories:</strong><br>
• Small: Under 20 pounds<br>
• Medium: 20-60 pounds<br>
• Large: Over 60 pounds
</span>
<span class="value">{info['Size']}</span>
</span>
</div>
<div class="detail-item">
<span class="tooltip">
<span class="icon">🏃</span>
<span class="label">Exercise Needs:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Exercise Needs:</strong><br>
• Low: Short walks<br>
• Moderate: 1-2 hours daily<br>
• High: 2+ hours daily<br>
• Very High: Constant activity
</span>
<span class="value">{info['Exercise Needs']}</span>
</span>
</div>
<div class="detail-item">
<span class="tooltip">
<span class="icon">👨👩👧👦</span>
<span class="label">Good with Children:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Child Compatibility:</strong><br>
• Yes: Excellent with kids<br>
• Moderate: Good with older children<br>
• No: Better for adult households
</span>
<span class="value">{info['Good with Children']}</span>
</span>
</div>
<div class="detail-item">
<span class="tooltip">
<span class="icon">⏳</span>
<span class="label">Lifespan:</span>
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Average Lifespan:</strong><br>
• Short: 6-8 years<br>
• Average: 10-15 years<br>
• Long: 12-20 years<br>
• Varies by size: Larger breeds typically have shorter lifespans
</span>
</span>
<span class="value">{info['Lifespan']}</span>
</div>
</div>
</div>
<div class="description-section">
<h3 class="subsection-title">
<span class="icon">📝</span> Description
</h3>
<p class="description-text">{info.get('Description', '')}</p>
</div>
<div class="noise-section">
<h3 class="section-header">
<span class="icon">🔊</span> Noise Behavior
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
<strong>Noise Behavior:</strong><br>
• Typical vocalization patterns<br>
• Common triggers and frequency<br>
• Based on breed characteristics
</span>
</span>
</h3>
<div class="noise-info">
<div class="noise-details">
<h4 class="section-header">Typical noise characteristics:</h4>
<div class="characteristics-list">
<div class="list-item">Moderate to high barker</div>
<div class="list-item">Alert watch dog</div>
<div class="list-item">Attention-seeking barks</div>
<div class="list-item">Social vocalizations</div>
</div>
<div class="noise-level-display">
<h4 class="section-header">Noise level:</h4>
<div class="level-indicator">
<span class="level-text">Moderate-High</span>
<div class="level-bars">
<span class="bar"></span>
<span class="bar"></span>
<span class="bar"></span>
</div>
</div>
</div>
<h4 class="section-header">Barking triggers:</h4>
<div class="triggers-list">
<div class="list-item">Separation anxiety</div>
<div class="list-item">Attention needs</div>
<div class="list-item">Strange noises</div>
<div class="list-item">Excitement</div>
</div>
</div>
<div class="noise-disclaimer">
<p class="disclaimer-text source-text">Source: Compiled from various breed behavior resources, 2024</p>
<p class="disclaimer-text">Individual dogs may vary in their vocalization patterns.</p>
<p class="disclaimer-text">Training can significantly influence barking behavior.</p>
<p class="disclaimer-text">Environmental factors may affect noise levels.</p>
</div>
</div>
</div>
<div class="health-section">
<h3 class="section-header">
<span class="icon">🏥</span> Health Insights
<span class="tooltip">
<span class="tooltip-icon">ⓘ</span>
<span class="tooltip-text">
Health information is compiled from multiple sources including veterinary resources, breed guides, and international canine health databases.
Each dog is unique and may vary from these general guidelines.
</span>
</span>
</h3>
<div class="health-info">
<div class="health-details">
<div class="health-block">
<h4 class="section-header">Common breed-specific health considerations:</h4>
<div class="health-grid">
<div class="health-item">Patellar luxation</div>
<div class="health-item">Progressive retinal atrophy</div>
<div class="health-item">Von Willebrand's disease</div>
<div class="health-item">Open fontanel</div>
</div>
</div>
<div class="health-block">
<h4 class="section-header">Recommended health screenings:</h4>
<div class="health-grid">
<div class="health-item screening">Patella evaluation</div>
<div class="health-item screening">Eye examination</div>
<div class="health-item screening">Blood clotting tests</div>
<div class="health-item screening">Skull development monitoring</div>
</div>
</div>
</div>
<div class="health-disclaimer">
<p class="disclaimer-text source-text">Source: Compiled from various veterinary and breed information resources, 2024</p>
<p class="disclaimer-text">This information is for reference only and based on breed tendencies.</p>
<p class="disclaimer-text">Each dog is unique and may not develop any or all of these conditions.</p>
<p class="disclaimer-text">Always consult with qualified veterinarians for professional advice.</p>
</div>
</div>
</div>
<div class="action-section">
<a href="https://www.akc.org/dog-breeds/{breed.lower().replace('_', '-')}/"
target="_blank"
class="akc-button">
<span class="icon">🌐</span>
Learn more about {breed.replace('_', ' ')} on AKC website
</a>
</div>
</div>
</div>
"""
html_content += "</div>"
return html_content
def get_breed_recommendations(user_prefs: UserPreferences, top_n: int = 15) -> List[Dict]:
"""基於使用者偏好推薦狗品種,確保正確的分數排序"""
print("Starting get_breed_recommendations")
recommendations = []
seen_breeds = set()
try:
# 獲取所有品種
conn = sqlite3.connect('animal_detector.db')
cursor = conn.cursor()
cursor.execute("SELECT Breed FROM AnimalCatalog")
all_breeds = cursor.fetchall()
conn.close()
# 收集所有品種的分數
for breed_tuple in all_breeds:
breed = breed_tuple[0]
base_breed = breed.split('(')[0].strip()
if base_breed in seen_breeds:
continue
seen_breeds.add(base_breed)
# 獲取品種資訊
breed_info = get_dog_description(breed)
if not isinstance(breed_info, dict):
continue
if user_prefs.size_preference != "no_preference":
breed_size = breed_info.get('Size', '').lower()
user_size = user_prefs.size_preference.lower()
if breed_size != user_size:
continue
# 獲取噪音資訊
noise_info = breed_noise_info.get(breed, {
"noise_notes": "Noise information not available",
"noise_level": "Unknown",
"source": "N/A"
})
# 將噪音資訊整合到品種資訊中
breed_info['noise_info'] = noise_info
# 計算基礎相容性分數
compatibility_scores = calculate_compatibility_score(breed_info, user_prefs)
# 計算品種特定加分
breed_bonus = 0.0
# 壽命加分
try:
lifespan = breed_info.get('Lifespan', '10-12 years')
years = [int(x) for x in lifespan.split('-')[0].split()[0:1]]
longevity_bonus = min(0.02, (max(years) - 10) * 0.005)
breed_bonus += longevity_bonus
except:
pass
# 性格特徵加分
temperament = breed_info.get('Temperament', '').lower()
positive_traits = ['friendly', 'gentle', 'affectionate', 'intelligent']
negative_traits = ['aggressive', 'stubborn', 'dominant']
breed_bonus += sum(0.01 for trait in positive_traits if trait in temperament)
breed_bonus -= sum(0.01 for trait in negative_traits if trait in temperament)
# 與孩童相容性加分
if user_prefs.has_children:
if breed_info.get('Good with Children') == 'Yes':
breed_bonus += 0.02
elif breed_info.get('Good with Children') == 'No':
breed_bonus -= 0.03
# 噪音相關加分
if user_prefs.noise_tolerance == 'low':
if noise_info['noise_level'].lower() == 'high':
breed_bonus -= 0.03
elif noise_info['noise_level'].lower() == 'low':
breed_bonus += 0.02
elif user_prefs.noise_tolerance == 'high':
if noise_info['noise_level'].lower() == 'high':
breed_bonus += 0.01
# 計算最終分數
breed_bonus = round(breed_bonus, 4)
final_score = round(compatibility_scores['overall'] + breed_bonus, 4)
recommendations.append({
'breed': breed,
'base_score': round(compatibility_scores['overall'], 4),
'bonus_score': round(breed_bonus, 4),
'final_score': final_score,
'scores': compatibility_scores,
'info': breed_info,
'noise_info': noise_info # 添加噪音資訊到推薦結果
})
# 嚴格按照 final_score 排序
recommendations.sort(key=lambda x: (round(-x['final_score'], 4), x['breed'] )) # 負號降序排列
# 選擇前N名並確保正確排序
final_recommendations = []
last_score = None
rank = 1
available_breeds = len(recommendations)
max_to_return = min(available_breeds, top_n) # 不會超過實際可用品種數
for rec in recommendations:
if len(final_recommendations) >= max_to_return:
break
current_score = rec['final_score']
if last_score is not None and current_score > last_score:
continue
rec['rank'] = rank
final_recommendations.append(rec)
last_score = current_score
rank += 1
# 驗證最終排序
for i in range(len(final_recommendations)-1):
current = final_recommendations[i]
next_rec = final_recommendations[i+1]
if current['final_score'] < next_rec['final_score']:
print(f"Warning: Sorting error detected!")
print(f"#{i+1} {current['breed']}: {current['final_score']}")
print(f"#{i+2} {next_rec['breed']}: {next_rec['final_score']}")
# 交換位置
final_recommendations[i], final_recommendations[i+1] = \
final_recommendations[i+1], final_recommendations[i]
# 打印最終結果以供驗證
print("\nFinal Rankings:")
for rec in final_recommendations:
print(f"#{rec['rank']} {rec['breed']}")
print(f"Base Score: {rec['base_score']:.4f}")
print(f"Bonus: {rec['bonus_score']:.4f}")
print(f"Final Score: {rec['final_score']:.4f}\n")
return final_recommendations
except Exception as e:
print(f"Error in get_breed_recommendations: {str(e)}")
print(f"Traceback: {traceback.format_exc()}")
return [] |