Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -250,15 +250,16 @@ def get_akc_breeds_link():
|
|
250 |
# if __name__ == "__main__":
|
251 |
# iface.launch()
|
252 |
|
253 |
-
def format_description(description, breed):
|
254 |
if isinstance(description, dict):
|
255 |
-
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items()])
|
256 |
else:
|
257 |
formatted_description = description
|
258 |
|
|
|
|
|
259 |
formatted_description = f"""
|
260 |
-
|
261 |
-
|
262 |
{formatted_description}
|
263 |
|
264 |
**Want to learn more about dog breeds?**
|
@@ -271,30 +272,6 @@ Please refer to the AKC's terms of use and privacy policy.*
|
|
271 |
"""
|
272 |
return formatted_description
|
273 |
|
274 |
-
def predict_single_dog(image):
|
275 |
-
image_tensor = preprocess_image(image)
|
276 |
-
with torch.no_grad():
|
277 |
-
output = model(image_tensor)
|
278 |
-
logits = output[0] if isinstance(output, tuple) else output
|
279 |
-
probabilities = F.softmax(logits, dim=1)
|
280 |
-
topk_probs, topk_indices = torch.topk(probabilities, k=3)
|
281 |
-
top1_prob = topk_probs[0][0].item()
|
282 |
-
topk_breeds = [dog_breeds[idx.item()] for idx in topk_indices[0]]
|
283 |
-
topk_probs_percent = [f"{prob.item() * 100:.2f}%" for prob in topk_probs[0]]
|
284 |
-
return top1_prob, topk_breeds, topk_probs_percent
|
285 |
-
|
286 |
-
def detect_multiple_dogs(image):
|
287 |
-
results = model_yolo(image)
|
288 |
-
dogs = []
|
289 |
-
for result in results:
|
290 |
-
for box in result.boxes:
|
291 |
-
if box.cls == 16: # COCO dataset class for dog is 16
|
292 |
-
xyxy = box.xyxy[0].tolist()
|
293 |
-
confidence = box.conf.item()
|
294 |
-
cropped_image = image.crop((xyxy[0], xyxy[1], xyxy[2], xyxy[3]))
|
295 |
-
dogs.append((cropped_image, confidence, xyxy))
|
296 |
-
return dogs
|
297 |
-
|
298 |
def predict(image):
|
299 |
if image is None:
|
300 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
@@ -318,7 +295,7 @@ def predict(image):
|
|
318 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
319 |
elif 0.2 <= top1_prob < 0.5:
|
320 |
explanation = f"""
|
321 |
-
Detected with moderate confidence. Here are the top 3 possible breeds
|
322 |
|
323 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
324 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
@@ -336,28 +313,28 @@ Click on a button below to view more information about each breed.
|
|
336 |
annotated_image = image.copy()
|
337 |
draw = ImageDraw.Draw(annotated_image)
|
338 |
|
339 |
-
for i, (cropped_image, _, box) in enumerate(dogs):
|
340 |
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
|
341 |
|
342 |
draw.rectangle(box, outline="red", width=3)
|
343 |
-
draw.text((box[0], box[1]), f"Dog {i
|
344 |
|
345 |
if top1_prob >= 0.5:
|
346 |
breed = topk_breeds[0]
|
347 |
description = get_dog_description(breed)
|
348 |
-
explanations.append(
|
349 |
elif 0.2 <= top1_prob < 0.5:
|
350 |
explanation = f"""
|
351 |
-
Dog {i
|
352 |
|
353 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
354 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
355 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
356 |
"""
|
357 |
explanations.append(explanation)
|
358 |
-
visible_buttons.extend([f"More about {topk_breeds[0]}", f"More about {topk_breeds[1]}", f"More about {topk_breeds[2]}"])
|
359 |
else:
|
360 |
-
explanations.append(f"Dog {i
|
361 |
|
362 |
final_explanation = "\n\n".join(explanations)
|
363 |
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=True, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=True, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")
|
@@ -366,7 +343,7 @@ Dog {i+1}: Detected with moderate confidence. Here are the top 3 possible breeds
|
|
366 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
367 |
|
368 |
def show_details(breed):
|
369 |
-
breed_name = breed.split("More about ")[-1]
|
370 |
description = get_dog_description(breed_name)
|
371 |
return format_description(description, breed_name)
|
372 |
|
|
|
250 |
# if __name__ == "__main__":
|
251 |
# iface.launch()
|
252 |
|
253 |
+
def format_description(description, breed, is_multi_dog=False, dog_number=None):
|
254 |
if isinstance(description, dict):
|
255 |
+
formatted_description = "\n\n".join([f"**{key}**: {value}" for key, value in description.items() if key != "Breed"])
|
256 |
else:
|
257 |
formatted_description = description
|
258 |
|
259 |
+
header = f"**Dog {dog_number}: {breed}**\n\n" if is_multi_dog else f"**Breed: {breed}**\n\n"
|
260 |
+
|
261 |
formatted_description = f"""
|
262 |
+
{header}
|
|
|
263 |
{formatted_description}
|
264 |
|
265 |
**Want to learn more about dog breeds?**
|
|
|
272 |
"""
|
273 |
return formatted_description
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
def predict(image):
|
276 |
if image is None:
|
277 |
return "Please upload an image to start.", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
|
|
295 |
return formatted_description, image, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
296 |
elif 0.2 <= top1_prob < 0.5:
|
297 |
explanation = f"""
|
298 |
+
**Detected with moderate confidence. Here are the top 3 possible breeds:**
|
299 |
|
300 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
301 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
|
|
313 |
annotated_image = image.copy()
|
314 |
draw = ImageDraw.Draw(annotated_image)
|
315 |
|
316 |
+
for i, (cropped_image, _, box) in enumerate(dogs, 1):
|
317 |
top1_prob, topk_breeds, topk_probs_percent = predict_single_dog(cropped_image)
|
318 |
|
319 |
draw.rectangle(box, outline="red", width=3)
|
320 |
+
draw.text((box[0], box[1]), f"Dog {i}", fill="red", font=ImageFont.truetype("arial.ttf", 20))
|
321 |
|
322 |
if top1_prob >= 0.5:
|
323 |
breed = topk_breeds[0]
|
324 |
description = get_dog_description(breed)
|
325 |
+
explanations.append(format_description(description, breed, is_multi_dog=True, dog_number=i))
|
326 |
elif 0.2 <= top1_prob < 0.5:
|
327 |
explanation = f"""
|
328 |
+
**Dog {i}: Detected with moderate confidence. Here are the top 3 possible breeds:**
|
329 |
|
330 |
1. **{topk_breeds[0]}** ({topk_probs_percent[0]})
|
331 |
2. **{topk_breeds[1]}** ({topk_probs_percent[1]})
|
332 |
3. **{topk_breeds[2]}** ({topk_probs_percent[2]})
|
333 |
"""
|
334 |
explanations.append(explanation)
|
335 |
+
visible_buttons.extend([f"More about Dog {i}: {topk_breeds[0]}", f"More about Dog {i}: {topk_breeds[1]}", f"More about Dog {i}: {topk_breeds[2]}"])
|
336 |
else:
|
337 |
+
explanations.append(f"**Dog {i}**: The image is unclear or the breed is not in the dataset.")
|
338 |
|
339 |
final_explanation = "\n\n".join(explanations)
|
340 |
return final_explanation, annotated_image, gr.update(visible=len(visible_buttons) >= 1, value=visible_buttons[0] if visible_buttons else ""), gr.update(visible=True, value=visible_buttons[1] if len(visible_buttons) >= 2 else ""), gr.update(visible=True, value=visible_buttons[2] if len(visible_buttons) >= 3 else "")
|
|
|
343 |
return f"An error occurred: {e}", None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
344 |
|
345 |
def show_details(breed):
|
346 |
+
breed_name = breed.split("More about ")[-1].split(": ")[-1] # Handle both single and multi-dog cases
|
347 |
description = get_dog_description(breed_name)
|
348 |
return format_description(description, breed_name)
|
349 |
|