MelodyFlow / docs /MBD.md
Gael Le Lan
Initial commit
9d0d223
|
raw
history blame
5.08 kB

MultiBand Diffusion

AudioCraft provides the code and models for MultiBand Diffusion, From Discrete Tokens to High Fidelity Audio using MultiBand Diffusion. MultiBand diffusion is a collection of 4 models that can decode tokens from EnCodec tokenizer into waveform audio. You can listen to some examples on the sample page.

Open In Colab

Installation

Please follow the AudioCraft installation instructions from the README.

Usage

We offer a number of way to use MultiBand Diffusion:

  1. The MusicGen demo includes a toggle to try diffusion decoder. You can use the demo locally by running python -m demos.musicgen_app --share, or through the MusicGen Colab.
  2. You can play with MusicGen by running the jupyter notebook at demos/musicgen_demo.ipynb locally (if you have a GPU).

API

We provide a simple API and pre-trained models for MusicGen and for EnCodec at 24 khz for 3 bitrates (1.5 kbps, 3 kbps and 6 kbps).

See after a quick example for using MultiBandDiffusion with the MusicGen API:

import torchaudio
from audiocraft.models import MusicGen, MultiBandDiffusion
from audiocraft.data.audio import audio_write

model = MusicGen.get_pretrained('facebook/musicgen-melody')
mbd = MultiBandDiffusion.get_mbd_musicgen()
model.set_generation_params(duration=8)  # generate 8 seconds.
wav, tokens = model.generate_unconditional(4, return_tokens=True)    # generates 4 unconditional audio samples and keep the tokens for MBD generation
descriptions = ['happy rock', 'energetic EDM', 'sad jazz']
wav_diffusion = mbd.tokens_to_wav(tokens)
wav, tokens = model.generate(descriptions, return_tokens=True)  # generates 3 samples and keep the tokens.
wav_diffusion = mbd.tokens_to_wav(tokens)
melody, sr = torchaudio.load('./assets/bach.mp3')
# Generates using the melody from the given audio and the provided descriptions, returns audio and audio tokens.
wav, tokens = model.generate_with_chroma(descriptions, melody[None].expand(3, -1, -1), sr, return_tokens=True)
wav_diffusion = mbd.tokens_to_wav(tokens)

for idx, one_wav in enumerate(wav):
    # Will save under {idx}.wav and {idx}_diffusion.wav, with loudness normalization at -14 db LUFS for comparing the methods.
    audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)
    audio_write(f'{idx}_diffusion', wav_diffusion[idx].cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True)

For the compression task (and to compare with EnCodec):

import torch
from audiocraft.models import MultiBandDiffusion
from encodec import EncodecModel
from audiocraft.data.audio import audio_read, audio_write

bandwidth = 3.0  # 1.5, 3.0, 6.0
mbd = MultiBandDiffusion.get_mbd_24khz(bw=bandwidth)
encodec = EncodecModel.encodec_model_24khz()

somepath = ''
wav, sr = audio_read(somepath)
with torch.no_grad():
    compressed_encodec = encodec(wav)
    compressed_diffusion = mbd.regenerate(wav, sample_rate=sr)

audio_write('sample_encodec', compressed_encodec.squeeze(0).cpu(), mbd.sample_rate, strategy="loudness", loudness_compressor=True)
audio_write('sample_diffusion', compressed_diffusion.squeeze(0).cpu(), mbd.sample_rate, strategy="loudness", loudness_compressor=True)

Training

The DiffusionSolver implements our diffusion training pipeline. It generates waveform audio conditioned on the embeddings extracted from a pre-trained EnCodec model (see EnCodec documentation for more details on how to train such model).

Note that we do NOT provide any of the datasets used for training our diffusion models. We provide a dummy dataset containing just a few examples for illustrative purposes.

Example configurations and grids

One can train diffusion models as described in the paper by using this dora grid.

# 4 bands MBD trainning
dora grid diffusion.4_bands_base_32khz

Learn more

Learn more about AudioCraft training pipelines in the dedicated section.

Citation

@article{sanroman2023fromdi,
  title={From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion},
  author={San Roman, Robin and Adi, Yossi and Deleforge, Antoine and Serizel, Romain and Synnaeve, Gabriel and Défossez, Alexandre},
  journal={arXiv preprint arXiv:},
  year={2023}
}

License

See license information in the README.