Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501 | |
Wrap some nn modules to support empty tensor input. Currently, these wrappers | |
are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask | |
heads are trained on only positive RoIs. | |
""" | |
import math | |
import torch | |
import torch.nn as nn | |
from mmengine.registry import MODELS | |
from torch.nn.modules.utils import _pair, _triple | |
if torch.__version__ == 'parrots': | |
TORCH_VERSION = torch.__version__ | |
else: | |
# torch.__version__ could be 1.3.1+cu92, we only need the first two | |
# for comparison | |
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2]) | |
def obsolete_torch_version(torch_version, version_threshold) -> bool: | |
return torch_version == 'parrots' or torch_version <= version_threshold | |
class NewEmptyTensorOp(torch.autograd.Function): | |
def forward(ctx, x: torch.Tensor, new_shape: tuple) -> torch.Tensor: | |
ctx.shape = x.shape | |
return x.new_empty(new_shape) | |
def backward(ctx, grad: torch.Tensor) -> tuple: | |
shape = ctx.shape | |
return NewEmptyTensorOp.apply(grad, shape), None | |
class Conv2d(nn.Conv2d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: | |
out_shape = [x.shape[0], self.out_channels] | |
for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size, | |
self.padding, self.stride, self.dilation): | |
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 | |
out_shape.append(o) | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
if self.training: | |
# produce dummy gradient to avoid DDP warning. | |
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
return empty + dummy | |
else: | |
return empty | |
return super().forward(x) | |
class Conv3d(nn.Conv3d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: | |
out_shape = [x.shape[0], self.out_channels] | |
for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size, | |
self.padding, self.stride, self.dilation): | |
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1 | |
out_shape.append(o) | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
if self.training: | |
# produce dummy gradient to avoid DDP warning. | |
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
return empty + dummy | |
else: | |
return empty | |
return super().forward(x) | |
class ConvTranspose2d(nn.ConvTranspose2d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: | |
out_shape = [x.shape[0], self.out_channels] | |
for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size, | |
self.padding, self.stride, | |
self.dilation, self.output_padding): | |
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
if self.training: | |
# produce dummy gradient to avoid DDP warning. | |
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
return empty + dummy | |
else: | |
return empty | |
return super().forward(x) | |
class ConvTranspose3d(nn.ConvTranspose3d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0: | |
out_shape = [x.shape[0], self.out_channels] | |
for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size, | |
self.padding, self.stride, | |
self.dilation, self.output_padding): | |
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op) | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
if self.training: | |
# produce dummy gradient to avoid DDP warning. | |
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
return empty + dummy | |
else: | |
return empty | |
return super().forward(x) | |
class MaxPool2d(nn.MaxPool2d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# PyTorch 1.9 does not support empty tensor inference yet | |
if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0: | |
out_shape = list(x.shape[:2]) | |
for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size), | |
_pair(self.padding), _pair(self.stride), | |
_pair(self.dilation)): | |
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 | |
o = math.ceil(o) if self.ceil_mode else math.floor(o) | |
out_shape.append(o) | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
return empty | |
return super().forward(x) | |
class MaxPool3d(nn.MaxPool3d): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# PyTorch 1.9 does not support empty tensor inference yet | |
if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0: | |
out_shape = list(x.shape[:2]) | |
for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size), | |
_triple(self.padding), | |
_triple(self.stride), | |
_triple(self.dilation)): | |
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1 | |
o = math.ceil(o) if self.ceil_mode else math.floor(o) | |
out_shape.append(o) | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
return empty | |
return super().forward(x) | |
class Linear(torch.nn.Linear): | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
# empty tensor forward of Linear layer is supported in Pytorch 1.6 | |
if obsolete_torch_version(TORCH_VERSION, (1, 5)) and x.numel() == 0: | |
out_shape = [x.shape[0], self.out_features] | |
empty = NewEmptyTensorOp.apply(x, out_shape) | |
if self.training: | |
# produce dummy gradient to avoid DDP warning. | |
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 | |
return empty + dummy | |
else: | |
return empty | |
return super().forward(x) | |