rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
58.1 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import copy
import random
import warnings
from itertools import product
from typing import Dict, Iterable, List, Optional, Sequence, Tuple, Union
import mmengine
import numpy as np
import mmcv
from mmcv.image.geometric import _scale_size
from .base import BaseTransform
from .builder import TRANSFORMS
from .utils import cache_randomness
from .wrappers import Compose
Number = Union[int, float]
@TRANSFORMS.register_module()
class Normalize(BaseTransform):
"""Normalize the image.
Required Keys:
- img
Modified Keys:
- img
Added Keys:
- img_norm_cfg
- mean
- std
- to_rgb
Args:
mean (sequence): Mean values of 3 channels.
std (sequence): Std values of 3 channels.
to_rgb (bool): Whether to convert the image from BGR to RGB before
normlizing the image. If ``to_rgb=True``, the order of mean and std
should be RGB. If ``to_rgb=False``, the order of mean and std
should be the same order of the image. Defaults to True.
"""
def __init__(self,
mean: Sequence[Number],
std: Sequence[Number],
to_rgb: bool = True) -> None:
self.mean = np.array(mean, dtype=np.float32)
self.std = np.array(std, dtype=np.float32)
self.to_rgb = to_rgb
def transform(self, results: dict) -> dict:
"""Function to normalize images.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Normalized results, key 'img_norm_cfg' key is added in to
result dict.
"""
results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std,
self.to_rgb)
results['img_norm_cfg'] = dict(
mean=self.mean, std=self.std, to_rgb=self.to_rgb)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb={self.to_rgb})'
return repr_str
@TRANSFORMS.register_module()
class Resize(BaseTransform):
"""Resize images & bbox & seg & keypoints.
This transform resizes the input image according to ``scale`` or
``scale_factor``. Bboxes, seg map and keypoints are then resized with the
same scale factor.
if ``scale`` and ``scale_factor`` are both set, it will use ``scale`` to
resize.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- gt_bboxes
- gt_seg_map
- gt_keypoints
- img_shape
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
scale (int or tuple): Images scales for resizing. Defaults to None
scale_factor (float or tuple[float]): Scale factors for resizing.
Defaults to None.
keep_ratio (bool): Whether to keep the aspect ratio when resizing the
image. Defaults to False.
clip_object_border (bool): Whether to clip the objects
outside the border of the image. In some dataset like MOT17, the gt
bboxes are allowed to cross the border of images. Therefore, we
don't need to clip the gt bboxes in these cases. Defaults to True.
backend (str): Image resize backend, choices are 'cv2' and 'pillow'.
These two backends generates slightly different results. Defaults
to 'cv2'.
interpolation (str): Interpolation method, accepted values are
"nearest", "bilinear", "bicubic", "area", "lanczos" for 'cv2'
backend, "nearest", "bilinear" for 'pillow' backend. Defaults
to 'bilinear'.
"""
def __init__(self,
scale: Optional[Union[int, Tuple[int, int]]] = None,
scale_factor: Optional[Union[float, Tuple[float,
float]]] = None,
keep_ratio: bool = False,
clip_object_border: bool = True,
backend: str = 'cv2',
interpolation='bilinear') -> None:
assert scale is not None or scale_factor is not None, (
'`scale` and'
'`scale_factor` can not both be `None`')
if scale is None:
self.scale = None
else:
if isinstance(scale, int):
self.scale = (scale, scale)
else:
self.scale = scale
self.backend = backend
self.interpolation = interpolation
self.keep_ratio = keep_ratio
self.clip_object_border = clip_object_border
if scale_factor is None:
self.scale_factor = None
elif isinstance(scale_factor, float):
self.scale_factor = (scale_factor, scale_factor)
elif isinstance(scale_factor, tuple):
assert (len(scale_factor)) == 2
self.scale_factor = scale_factor
else:
raise TypeError(
f'expect scale_factor is float or Tuple(float), but'
f'get {type(scale_factor)}')
def _resize_img(self, results: dict) -> None:
"""Resize images with ``results['scale']``."""
if results.get('img', None) is not None:
if self.keep_ratio:
img, scale_factor = mmcv.imrescale(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
# the w_scale and h_scale has minor difference
# a real fix should be done in the mmcv.imrescale in the future
new_h, new_w = img.shape[:2]
h, w = results['img'].shape[:2]
w_scale = new_w / w
h_scale = new_h / h
else:
img, w_scale, h_scale = mmcv.imresize(
results['img'],
results['scale'],
interpolation=self.interpolation,
return_scale=True,
backend=self.backend)
results['img'] = img
results['img_shape'] = img.shape[:2]
results['scale_factor'] = (w_scale, h_scale)
results['keep_ratio'] = self.keep_ratio
def _resize_bboxes(self, results: dict) -> None:
"""Resize bounding boxes with ``results['scale_factor']``."""
if results.get('gt_bboxes', None) is not None:
bboxes = results['gt_bboxes'] * np.tile(
np.array(results['scale_factor']), 2)
if self.clip_object_border:
bboxes[:, 0::2] = np.clip(bboxes[:, 0::2], 0,
results['img_shape'][1])
bboxes[:, 1::2] = np.clip(bboxes[:, 1::2], 0,
results['img_shape'][0])
results['gt_bboxes'] = bboxes
def _resize_seg(self, results: dict) -> None:
"""Resize semantic segmentation map with ``results['scale']``."""
if results.get('gt_seg_map', None) is not None:
if self.keep_ratio:
gt_seg = mmcv.imrescale(
results['gt_seg_map'],
results['scale'],
interpolation='nearest',
backend=self.backend)
else:
gt_seg = mmcv.imresize(
results['gt_seg_map'],
results['scale'],
interpolation='nearest',
backend=self.backend)
results['gt_seg_map'] = gt_seg
def _resize_keypoints(self, results: dict) -> None:
"""Resize keypoints with ``results['scale_factor']``."""
if results.get('gt_keypoints', None) is not None:
keypoints = results['gt_keypoints']
keypoints[:, :, :2] = keypoints[:, :, :2] * np.array(
results['scale_factor'])
if self.clip_object_border:
keypoints[:, :, 0] = np.clip(keypoints[:, :, 0], 0,
results['img_shape'][1])
keypoints[:, :, 1] = np.clip(keypoints[:, :, 1], 0,
results['img_shape'][0])
results['gt_keypoints'] = keypoints
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes, semantic
segmentation map and keypoints.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
and 'keep_ratio' keys are updated in result dict.
"""
if self.scale:
results['scale'] = self.scale
else:
img_shape = results['img'].shape[:2]
results['scale'] = _scale_size(img_shape[::-1],
self.scale_factor) # type: ignore
self._resize_img(results)
self._resize_bboxes(results)
self._resize_seg(results)
self._resize_keypoints(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'scale_factor={self.scale_factor}, '
repr_str += f'keep_ratio={self.keep_ratio}, '
repr_str += f'clip_object_border={self.clip_object_border}), '
repr_str += f'backend={self.backend}), '
repr_str += f'interpolation={self.interpolation})'
return repr_str
@TRANSFORMS.register_module()
class Pad(BaseTransform):
"""Pad the image & segmentation map.
There are three padding modes: (1) pad to a fixed size and (2) pad to the
minimum size that is divisible by some number. and (3)pad to square. Also,
pad to square and pad to the minimum size can be used as the same time.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
Modified Keys:
- img
- gt_seg_map
- img_shape
Added Keys:
- pad_shape
- pad_fixed_size
- pad_size_divisor
Args:
size (tuple, optional): Fixed padding size.
Expected padding shape (w, h). Defaults to None.
size_divisor (int, optional): The divisor of padded size. Defaults to
None.
pad_to_square (bool): Whether to pad the image into a square.
Currently only used for YOLOX. Defaults to False.
pad_val (Number | dict[str, Number], optional): Padding value for if
the pad_mode is "constant". If it is a single number, the value
to pad the image is the number and to pad the semantic
segmentation map is 255. If it is a dict, it should have the
following keys:
- img: The value to pad the image.
- seg: The value to pad the semantic segmentation map.
Defaults to dict(img=0, seg=255).
padding_mode (str): Type of padding. Should be: constant, edge,
reflect or symmetric. Defaults to 'constant'.
- constant: pads with a constant value, this value is specified
with pad_val.
- edge: pads with the last value at the edge of the image.
- reflect: pads with reflection of image without repeating the last
value on the edge. For example, padding [1, 2, 3, 4] with 2
elements on both sides in reflect mode will result in
[3, 2, 1, 2, 3, 4, 3, 2].
- symmetric: pads with reflection of image repeating the last value
on the edge. For example, padding [1, 2, 3, 4] with 2 elements on
both sides in symmetric mode will result in
[2, 1, 1, 2, 3, 4, 4, 3]
"""
def __init__(self,
size: Optional[Tuple[int, int]] = None,
size_divisor: Optional[int] = None,
pad_to_square: bool = False,
pad_val: Union[Number, dict] = dict(img=0, seg=255),
padding_mode: str = 'constant') -> None:
self.size = size
self.size_divisor = size_divisor
if isinstance(pad_val, int):
pad_val = dict(img=pad_val, seg=255)
assert isinstance(pad_val, dict), 'pad_val '
self.pad_val = pad_val
self.pad_to_square = pad_to_square
if pad_to_square:
assert size is None, \
'The size and size_divisor must be None ' \
'when pad2square is True'
else:
assert size is not None or size_divisor is not None, \
'only one of size and size_divisor should be valid'
assert size is None or size_divisor is None
assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
self.padding_mode = padding_mode
def _pad_img(self, results: dict) -> None:
"""Pad images according to ``self.size``."""
pad_val = self.pad_val.get('img', 0)
size = None
if self.pad_to_square:
max_size = max(results['img'].shape[:2])
size = (max_size, max_size)
if self.size_divisor is not None:
if size is None:
size = (results['img'].shape[0], results['img'].shape[1])
pad_h = int(np.ceil(
size[0] / self.size_divisor)) * self.size_divisor
pad_w = int(np.ceil(
size[1] / self.size_divisor)) * self.size_divisor
size = (pad_h, pad_w)
elif self.size is not None:
size = self.size[::-1]
if isinstance(pad_val, int) and results['img'].ndim == 3:
pad_val = tuple(pad_val for _ in range(results['img'].shape[2]))
padded_img = mmcv.impad(
results['img'],
shape=size,
pad_val=pad_val,
padding_mode=self.padding_mode)
results['img'] = padded_img
results['pad_shape'] = padded_img.shape
results['pad_fixed_size'] = self.size
results['pad_size_divisor'] = self.size_divisor
results['img_shape'] = padded_img.shape[:2]
def _pad_seg(self, results: dict) -> None:
"""Pad semantic segmentation map according to
``results['pad_shape']``."""
if results.get('gt_seg_map', None) is not None:
pad_val = self.pad_val.get('seg', 255)
if isinstance(pad_val, int) and results['gt_seg_map'].ndim == 3:
pad_val = tuple(
pad_val for _ in range(results['gt_seg_map'].shape[2]))
results['gt_seg_map'] = mmcv.impad(
results['gt_seg_map'],
shape=results['pad_shape'][:2],
pad_val=pad_val,
padding_mode=self.padding_mode)
def transform(self, results: dict) -> dict:
"""Call function to pad images, masks, semantic segmentation maps.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Updated result dict.
"""
self._pad_img(results)
self._pad_seg(results)
return results
def __repr__(self):
repr_str = self.__class__.__name__
repr_str += f'(size={self.size}, '
repr_str += f'size_divisor={self.size_divisor}, '
repr_str += f'pad_to_square={self.pad_to_square}, '
repr_str += f'pad_val={self.pad_val}), '
repr_str += f'padding_mode={self.padding_mode})'
return repr_str
@TRANSFORMS.register_module()
class CenterCrop(BaseTransform):
"""Crop the center of the image, segmentation masks, bounding boxes and key
points. If the crop area exceeds the original image and ``auto_pad`` is
True, the original image will be padded before cropping.
Required Keys:
- img
- gt_seg_map (optional)
- gt_bboxes (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- img_shape
- gt_seg_map (optional)
- gt_bboxes (optional)
- gt_keypoints (optional)
Added Key:
- pad_shape
Args:
crop_size (Union[int, Tuple[int, int]]): Expected size after cropping
with the format of (w, h). If set to an integer, then cropping
width and height are equal to this integer.
auto_pad (bool): Whether to pad the image if it's smaller than the
``crop_size``. Defaults to False.
pad_cfg (dict): Base config for padding. Refer to ``mmcv.Pad`` for
detail. Defaults to ``dict(type='Pad')``.
clip_object_border (bool): Whether to clip the objects
outside the border of the image. In some dataset like MOT17, the
gt bboxes are allowed to cross the border of images. Therefore,
we don't need to clip the gt bboxes in these cases.
Defaults to True.
"""
def __init__(self,
crop_size: Union[int, Tuple[int, int]],
auto_pad: bool = False,
pad_cfg: dict = dict(type='Pad'),
clip_object_border: bool = True) -> None:
super().__init__()
assert isinstance(crop_size, int) or (
isinstance(crop_size, tuple) and len(crop_size) == 2
), 'The expected crop_size is an integer, or a tuple containing two '
'intergers'
if isinstance(crop_size, int):
crop_size = (crop_size, crop_size)
assert crop_size[0] > 0 and crop_size[1] > 0
self.crop_size = crop_size
self.auto_pad = auto_pad
self.pad_cfg = pad_cfg.copy()
# size will be overwritten
if 'size' in self.pad_cfg and auto_pad:
warnings.warn('``size`` is set in ``pad_cfg``,'
'however this argument will be overwritten'
' according to crop size and image size')
self.clip_object_border = clip_object_border
def _crop_img(self, results: dict, bboxes: np.ndarray) -> None:
"""Crop image.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if results.get('img', None) is not None:
img = mmcv.imcrop(results['img'], bboxes=bboxes)
img_shape = img.shape[:2] # type: ignore
results['img'] = img
results['img_shape'] = img_shape
results['pad_shape'] = img_shape
def _crop_seg_map(self, results: dict, bboxes: np.ndarray) -> None:
"""Crop semantic segmentation map.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if results.get('gt_seg_map', None) is not None:
img = mmcv.imcrop(results['gt_seg_map'], bboxes=bboxes)
results['gt_seg_map'] = img
def _crop_bboxes(self, results: dict, bboxes: np.ndarray) -> None:
"""Update bounding boxes according to CenterCrop.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if 'gt_bboxes' in results:
offset_w = bboxes[0]
offset_h = bboxes[1]
bbox_offset = np.array([offset_w, offset_h, offset_w, offset_h])
# gt_bboxes has shape (num_gts, 4) in (tl_x, tl_y, br_x, br_y)
# order.
gt_bboxes = results['gt_bboxes'] - bbox_offset
if self.clip_object_border:
gt_bboxes[:, 0::2] = np.clip(gt_bboxes[:, 0::2], 0,
results['img'].shape[1])
gt_bboxes[:, 1::2] = np.clip(gt_bboxes[:, 1::2], 0,
results['img'].shape[0])
results['gt_bboxes'] = gt_bboxes
def _crop_keypoints(self, results: dict, bboxes: np.ndarray) -> None:
"""Update key points according to CenterCrop. Keypoints that not in the
cropped image will be set invisible.
Args:
results (dict): Result dict contains the data to transform.
bboxes (np.ndarray): Shape (4, ), location of cropped bboxes.
"""
if 'gt_keypoints' in results:
offset_w = bboxes[0]
offset_h = bboxes[1]
keypoints_offset = np.array([offset_w, offset_h, 0])
# gt_keypoints has shape (N, NK, 3) in (x, y, visibility) order,
# NK = number of points per object
gt_keypoints = results['gt_keypoints'] - keypoints_offset
# set gt_kepoints out of the result image invisible
height, width = results['img'].shape[:2]
valid_pos = (gt_keypoints[:, :, 0] >=
0) * (gt_keypoints[:, :, 0] <
width) * (gt_keypoints[:, :, 1] >= 0) * (
gt_keypoints[:, :, 1] < height)
gt_keypoints[:, :, 2] = np.where(valid_pos, gt_keypoints[:, :, 2],
0)
gt_keypoints[:, :, 0] = np.clip(gt_keypoints[:, :, 0], 0,
results['img'].shape[1])
gt_keypoints[:, :, 1] = np.clip(gt_keypoints[:, :, 1], 0,
results['img'].shape[0])
results['gt_keypoints'] = gt_keypoints
def transform(self, results: dict) -> dict:
"""Apply center crop on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Results with CenterCropped image and semantic segmentation
map.
"""
crop_width, crop_height = self.crop_size[0], self.crop_size[1]
assert 'img' in results, '`img` is not found in results'
img = results['img']
# img.shape has length 2 for grayscale, length 3 for color
img_height, img_width = img.shape[:2]
if crop_height > img_height or crop_width > img_width:
if self.auto_pad:
# pad the area
img_height = max(img_height, crop_height)
img_width = max(img_width, crop_width)
pad_size = (img_width, img_height)
_pad_cfg = self.pad_cfg.copy()
_pad_cfg.update(dict(size=pad_size))
pad_transform = TRANSFORMS.build(_pad_cfg)
results = pad_transform(results)
else:
crop_height = min(crop_height, img_height)
crop_width = min(crop_width, img_width)
y1 = max(0, int(round((img_height - crop_height) / 2.)))
x1 = max(0, int(round((img_width - crop_width) / 2.)))
y2 = min(img_height, y1 + crop_height) - 1
x2 = min(img_width, x1 + crop_width) - 1
bboxes = np.array([x1, y1, x2, y2])
# crop the image
self._crop_img(results, bboxes)
# crop the gt_seg_map
self._crop_seg_map(results, bboxes)
# crop the bounding box
self._crop_bboxes(results, bboxes)
# crop the keypoints
self._crop_keypoints(results, bboxes)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(crop_size = {self.crop_size}'
repr_str += f', auto_pad={self.auto_pad}'
repr_str += f', pad_cfg={self.pad_cfg}'
repr_str += f',clip_object_border = {self.clip_object_border})'
return repr_str
@TRANSFORMS.register_module()
class RandomGrayscale(BaseTransform):
"""Randomly convert image to grayscale with a probability.
Required Key:
- img
Modified Key:
- img
Added Keys:
- grayscale
- grayscale_weights
Args:
prob (float): Probability that image should be converted to
grayscale. Defaults to 0.1.
keep_channels (bool): Whether keep channel number the same as
input. Defaults to False.
channel_weights (tuple): The grayscale weights of each channel,
and the weights will be normalized. For example, (1, 2, 1)
will be normalized as (0.25, 0.5, 0.25). Defaults to
(1., 1., 1.).
color_format (str): Color format set to be any of 'bgr',
'rgb', 'hsv'. Note: 'hsv' image will be transformed into 'bgr'
format no matter whether it is grayscaled. Defaults to 'bgr'.
"""
def __init__(self,
prob: float = 0.1,
keep_channels: bool = False,
channel_weights: Sequence[float] = (1., 1., 1.),
color_format: str = 'bgr') -> None:
super().__init__()
assert 0. <= prob <= 1., ('The range of ``prob`` value is [0., 1.],' +
f' but got {prob} instead')
self.prob = prob
self.keep_channels = keep_channels
self.channel_weights = channel_weights
assert color_format in ['bgr', 'rgb', 'hsv']
self.color_format = color_format
@cache_randomness
def _random_prob(self):
return random.random()
def transform(self, results: dict) -> dict:
"""Apply random grayscale on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Results with grayscale image.
"""
img = results['img']
# convert hsv to bgr
if self.color_format == 'hsv':
img = mmcv.hsv2bgr(img)
img = img[..., None] if img.ndim == 2 else img
num_output_channels = img.shape[2]
if self._random_prob() < self.prob:
if num_output_channels > 1:
assert num_output_channels == len(
self.channel_weights
), 'The length of ``channel_weights`` are supposed to be '
f'num_output_channels, but got {len(self.channel_weights)}'
' instead.'
normalized_weights = (
np.array(self.channel_weights) / sum(self.channel_weights))
img = (normalized_weights * img).sum(axis=2)
img = img.astype('uint8')
if self.keep_channels:
img = img[:, :, None]
results['img'] = np.dstack(
[img for _ in range(num_output_channels)])
else:
results['img'] = img
return results
img = img.astype('uint8')
results['img'] = img
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(prob = {self.prob}'
repr_str += f', keep_channels = {self.keep_channels}'
repr_str += f', channel_weights = {self.channel_weights}'
repr_str += f', color_format = {self.color_format})'
return repr_str
@TRANSFORMS.register_module()
class MultiScaleFlipAug(BaseTransform):
"""Test-time augmentation with multiple scales and flipping.
An example configuration is as followed:
.. code-block::
dict(
type='MultiScaleFlipAug',
scales=[(1333, 400), (1333, 800)],
flip=True,
transforms=[
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=1),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
``results`` will be resized using all the sizes in ``scales``.
If ``flip`` is True, then flipped results will also be added into output
list.
For the above configuration, there are four combinations of resize
and flip:
- Resize to (1333, 400) + no flip
- Resize to (1333, 400) + flip
- Resize to (1333, 800) + no flip
- resize to (1333, 800) + flip
The four results are then transformed with ``transforms`` argument.
After that, results are wrapped into lists of the same length as below:
.. code-block::
dict(
inputs=[...],
data_samples=[...]
)
Where the length of ``inputs`` and ``data_samples`` are both 4.
Required Keys:
- Depending on the requirements of the ``transforms`` parameter.
Modified Keys:
- All output keys of each transform.
Args:
transforms (list[dict]): Transforms to be applied to each resized
and flipped data.
scales (tuple | list[tuple] | None): Images scales for resizing.
scale_factor (float or tuple[float]): Scale factors for resizing.
Defaults to None.
allow_flip (bool): Whether apply flip augmentation. Defaults to False.
flip_direction (str | list[str]): Flip augmentation directions,
options are "horizontal", "vertical" and "diagonal". If
flip_direction is a list, multiple flip augmentations will be
applied. It has no effect when flip == False. Defaults to
"horizontal".
resize_cfg (dict): Base config for resizing. Defaults to
``dict(type='Resize', keep_ratio=True)``.
flip_cfg (dict): Base config for flipping. Defaults to
``dict(type='RandomFlip')``.
"""
def __init__(
self,
transforms: List[dict],
scales: Optional[Union[Tuple, List[Tuple]]] = None,
scale_factor: Optional[Union[float, List[float]]] = None,
allow_flip: bool = False,
flip_direction: Union[str, List[str]] = 'horizontal',
resize_cfg: dict = dict(type='Resize', keep_ratio=True),
flip_cfg: dict = dict(type='RandomFlip')
) -> None:
super().__init__()
self.transforms = Compose(transforms) # type: ignore
if scales is not None:
self.scales = scales if isinstance(scales, list) else [scales]
self.scale_key = 'scale'
assert mmengine.is_list_of(self.scales, tuple)
else:
# if ``scales`` and ``scale_factor`` both be ``None``
if scale_factor is None:
self.scales = [1.] # type: ignore
elif isinstance(scale_factor, list):
self.scales = scale_factor # type: ignore
else:
self.scales = [scale_factor] # type: ignore
self.scale_key = 'scale_factor'
self.allow_flip = allow_flip
self.flip_direction = flip_direction if isinstance(
flip_direction, list) else [flip_direction]
assert mmengine.is_list_of(self.flip_direction, str)
if not self.allow_flip and self.flip_direction != ['horizontal']:
warnings.warn(
'flip_direction has no effect when flip is set to False')
self.resize_cfg = resize_cfg.copy()
self.flip_cfg = flip_cfg
def transform(self, results: dict) -> Dict:
"""Apply test time augment transforms on results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: The augmented data, where each value is wrapped
into a list.
"""
data_samples = []
inputs = []
flip_args = [(False, '')]
if self.allow_flip:
flip_args += [(True, direction)
for direction in self.flip_direction]
for scale in self.scales:
for flip, direction in flip_args:
_resize_cfg = self.resize_cfg.copy()
_resize_cfg.update({self.scale_key: scale})
_resize_flip = [_resize_cfg]
if flip:
_flip_cfg = self.flip_cfg.copy()
_flip_cfg.update(prob=1.0, direction=direction)
_resize_flip.append(_flip_cfg)
else:
results['flip'] = False
results['flip_direction'] = None
resize_flip = Compose(_resize_flip)
_results = resize_flip(results.copy())
packed_results = self.transforms(_results) # type: ignore
inputs.append(packed_results['inputs']) # type: ignore
data_samples.append(
packed_results['data_sample']) # type: ignore
return dict(inputs=inputs, data_sample=data_samples)
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(transforms={self.transforms}'
repr_str += f', scales={self.scales}'
repr_str += f', allow_flip={self.allow_flip}'
repr_str += f', flip_direction={self.flip_direction})'
return repr_str
@TRANSFORMS.register_module()
class TestTimeAug(BaseTransform):
"""Test-time augmentation transform.
An example configuration is as followed:
.. code-block::
dict(type='TestTimeAug',
transforms=[
[dict(type='Resize', scale=(1333, 400), keep_ratio=True),
dict(type='Resize', scale=(1333, 800), keep_ratio=True)],
[dict(type='RandomFlip', prob=1.),
dict(type='RandomFlip', prob=0.)],
[dict(type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape',
'img_shape', 'scale_factor', 'flip',
'flip_direction'))]])
``results`` will be transformed using all transforms defined in
``transforms`` arguments.
For the above configuration, there are four combinations of resize
and flip:
- Resize to (1333, 400) + no flip
- Resize to (1333, 400) + flip
- Resize to (1333, 800) + no flip
- resize to (1333, 800) + flip
After that, results are wrapped into lists of the same length as below:
.. code-block::
dict(
inputs=[...],
data_samples=[...]
)
The length of ``inputs`` and ``data_samples`` are both 4.
Required Keys:
- Depending on the requirements of the ``transforms`` parameter.
Modified Keys:
- All output keys of each transform.
Args:
transforms (list[list[dict]]): Transforms to be applied to data sampled
from dataset. ``transforms`` is a list of list, and each list
element usually represents a series of transforms with the same
type and different arguments. Data will be processed by each list
elements sequentially. See more information in :meth:`transform`.
"""
def __init__(self, transforms: list):
for i, transform_list in enumerate(transforms):
for j, transform in enumerate(transform_list):
if isinstance(transform, dict):
transform_list[j] = TRANSFORMS.build(transform)
elif callable(transform):
continue
else:
raise TypeError(
'transform must be callable or a dict, but got'
f' {type(transform)}')
transforms[i] = transform_list
self.subroutines = [
Compose(subroutine) for subroutine in product(*transforms)
]
def transform(self, results: dict) -> dict:
"""Apply all transforms defined in :attr:`transforms` to the results.
As the example given in :obj:`TestTimeAug`, ``transforms`` consists of
2 ``Resize``, 2 ``RandomFlip`` and 1 ``PackDetInputs``.
The data sampled from dataset will be processed as follows:
1. Data will be processed by 2 ``Resize`` and return a list
of 2 results.
2. Each result in list will be further passed to 2
``RandomFlip``, and aggregates into a list of 4 results.
3. Each result will be processed by ``PackDetInputs``, and
return a list of dict.
4. Aggregates the same fields of results, and finally returns
a dict. Each value of the dict represents 4 transformed
results.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: The augmented data, where each value is wrapped
into a list.
"""
results_list = [] # type: ignore
for subroutine in self.subroutines:
result = subroutine(copy.deepcopy(results))
assert isinstance(result, dict), (
f'Data processed by {subroutine} must return a dict, but got '
f'{result}')
assert result is not None, (
f'Data processed by {subroutine} in `TestTimeAug` should not '
'be None! Please check your validation dataset and the '
f'transforms in {subroutine}')
results_list.append(result)
aug_data_dict = {
key: [item[key] for item in results_list] # type: ignore
for key in results_list[0] # type: ignore
}
return aug_data_dict
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += 'transforms=\n'
for subroutine in self.subroutines:
repr_str += f'{repr(subroutine)}\n'
return repr_str
@TRANSFORMS.register_module()
class RandomChoiceResize(BaseTransform):
"""Resize images & bbox & mask from a list of multiple scales.
This transform resizes the input image to some scale. Bboxes and masks are
then resized with the same scale factor. Resize scale will be randomly
selected from ``scales``.
How to choose the target scale to resize the image will follow the rules
below:
- if `scale` is a list of tuple, the target scale is sampled from the list
uniformally.
- if `scale` is a tuple, the target scale will be set to the tuple.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- img_shape
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Added Keys:
- scale
- scale_factor
- scale_idx
- keep_ratio
Args:
scales (Union[list, Tuple]): Images scales for resizing.
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
Note:
By defaults, the ``resize_type`` is "Resize", if it's not overwritten
by your registry, it indicates the :class:`mmcv.Resize`. And therefore,
``resize_kwargs`` accepts any keyword arguments of it, like
``keep_ratio``, ``interpolation`` and so on.
If you want to use your custom resize class, the class should accept
``scale`` argument and have ``scale`` attribution which determines the
resize shape.
"""
def __init__(
self,
scales: Sequence[Union[int, Tuple]],
resize_type: str = 'Resize',
**resize_kwargs,
) -> None:
super().__init__()
if isinstance(scales, list):
self.scales = scales
else:
self.scales = [scales]
assert mmengine.is_seq_of(self.scales, (tuple, int))
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
# create a empty Resize object
self.resize = TRANSFORMS.build({'scale': 0, **self.resize_cfg})
@cache_randomness
def _random_select(self) -> Tuple[int, int]:
"""Randomly select an scale from given candidates.
Returns:
(tuple, int): Returns a tuple ``(scale, scale_dix)``,
where ``scale`` is the selected image scale and
``scale_idx`` is the selected index in the given candidates.
"""
scale_idx = np.random.randint(len(self.scales))
scale = self.scales[scale_idx]
return scale, scale_idx
def transform(self, results: dict) -> dict:
"""Apply resize transforms on results from a list of scales.
Args:
results (dict): Result dict contains the data to transform.
Returns:
dict: Resized results, 'img', 'gt_bboxes', 'gt_seg_map',
'gt_keypoints', 'scale', 'scale_factor', 'img_shape',
and 'keep_ratio' keys are updated in result dict.
"""
target_scale, scale_idx = self._random_select()
self.resize.scale = target_scale
results = self.resize(results)
results['scale_idx'] = scale_idx
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(scales={self.scales}'
repr_str += f', resize_cfg={self.resize_cfg})'
return repr_str
@TRANSFORMS.register_module()
class RandomFlip(BaseTransform):
"""Flip the image & bbox & keypoints & segmentation map. Added or Updated
keys: flip, flip_direction, img, gt_bboxes, gt_seg_map, and
gt_keypoints. There are 3 flip modes:
- ``prob`` is float, ``direction`` is string: the image will be
``direction``ly flipped with probability of ``prob`` .
E.g., ``prob=0.5``, ``direction='horizontal'``,
then image will be horizontally flipped with probability of 0.5.
- ``prob`` is float, ``direction`` is list of string: the image will
be ``direction[i]``ly flipped with probability of
``prob/len(direction)``.
E.g., ``prob=0.5``, ``direction=['horizontal', 'vertical']``,
then image will be horizontally flipped with probability of 0.25,
vertically with probability of 0.25.
- ``prob`` is list of float, ``direction`` is list of string:
given ``len(prob) == len(direction)``, the image will
be ``direction[i]``ly flipped with probability of ``prob[i]``.
E.g., ``prob=[0.3, 0.5]``, ``direction=['horizontal',
'vertical']``, then image will be horizontally flipped with
probability of 0.3, vertically with probability of 0.5.
Required Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Modified Keys:
- img
- gt_bboxes (optional)
- gt_seg_map (optional)
- gt_keypoints (optional)
Added Keys:
- flip
- flip_direction
- swap_seg_labels (optional)
Args:
prob (float | list[float], optional): The flipping probability.
Defaults to None.
direction(str | list[str]): The flipping direction. Options
If input is a list, the length must equal ``prob``. Each
element in ``prob`` indicates the flip probability of
corresponding direction. Defaults to 'horizontal'.
swap_seg_labels (list, optional): The label pair need to be swapped
for ground truth, like 'left arm' and 'right arm' need to be
swapped after horizontal flipping. For example, ``[(1, 5)]``,
where 1/5 is the label of the left/right arm. Defaults to None.
"""
def __init__(self,
prob: Optional[Union[float, Iterable[float]]] = None,
direction: Union[str, Sequence[Optional[str]]] = 'horizontal',
swap_seg_labels: Optional[Sequence] = None) -> None:
if isinstance(prob, list):
assert mmengine.is_list_of(prob, float)
assert 0 <= sum(prob) <= 1
elif isinstance(prob, float):
assert 0 <= prob <= 1
else:
raise ValueError(f'probs must be float or list of float, but \
got `{type(prob)}`.')
self.prob = prob
self.swap_seg_labels = swap_seg_labels
valid_directions = ['horizontal', 'vertical', 'diagonal']
if isinstance(direction, str):
assert direction in valid_directions
elif isinstance(direction, list):
assert mmengine.is_list_of(direction, str)
assert set(direction).issubset(set(valid_directions))
else:
raise ValueError(f'direction must be either str or list of str, \
but got `{type(direction)}`.')
self.direction = direction
if isinstance(prob, list):
assert len(prob) == len(self.direction)
def _flip_bbox(self, bboxes: np.ndarray, img_shape: Tuple[int, int],
direction: str) -> np.ndarray:
"""Flip bboxes horizontally.
Args:
bboxes (numpy.ndarray): Bounding boxes, shape (..., 4*k)
img_shape (tuple[int]): Image shape (height, width)
direction (str): Flip direction. Options are 'horizontal',
'vertical', and 'diagonal'.
Returns:
numpy.ndarray: Flipped bounding boxes.
"""
assert bboxes.shape[-1] % 4 == 0
flipped = bboxes.copy()
h, w = img_shape
if direction == 'horizontal':
flipped[..., 0::4] = w - bboxes[..., 2::4]
flipped[..., 2::4] = w - bboxes[..., 0::4]
elif direction == 'vertical':
flipped[..., 1::4] = h - bboxes[..., 3::4]
flipped[..., 3::4] = h - bboxes[..., 1::4]
elif direction == 'diagonal':
flipped[..., 0::4] = w - bboxes[..., 2::4]
flipped[..., 1::4] = h - bboxes[..., 3::4]
flipped[..., 2::4] = w - bboxes[..., 0::4]
flipped[..., 3::4] = h - bboxes[..., 1::4]
else:
raise ValueError(
f"Flipping direction must be 'horizontal', 'vertical', \
or 'diagonal', but got '{direction}'")
return flipped
def _flip_keypoints(
self,
keypoints: np.ndarray,
img_shape: Tuple[int, int],
direction: str,
) -> np.ndarray:
"""Flip keypoints horizontally, vertically or diagonally.
Args:
keypoints (numpy.ndarray): Keypoints, shape (..., 2)
img_shape (tuple[int]): Image shape (height, width)
direction (str): Flip direction. Options are 'horizontal',
'vertical', and 'diagonal'.
Returns:
numpy.ndarray: Flipped keypoints.
"""
meta_info = keypoints[..., 2:]
keypoints = keypoints[..., :2]
flipped = keypoints.copy()
h, w = img_shape
if direction == 'horizontal':
flipped[..., 0::2] = w - keypoints[..., 0::2]
elif direction == 'vertical':
flipped[..., 1::2] = h - keypoints[..., 1::2]
elif direction == 'diagonal':
flipped[..., 0::2] = w - keypoints[..., 0::2]
flipped[..., 1::2] = h - keypoints[..., 1::2]
else:
raise ValueError(
f"Flipping direction must be 'horizontal', 'vertical', \
or 'diagonal', but got '{direction}'")
flipped = np.concatenate([flipped, meta_info], axis=-1)
return flipped
def _flip_seg_map(self, seg_map: dict, direction: str) -> np.ndarray:
"""Flip segmentation map horizontally, vertically or diagonally.
Args:
seg_map (numpy.ndarray): segmentation map, shape (H, W).
direction (str): Flip direction. Options are 'horizontal',
'vertical'.
Returns:
numpy.ndarray: Flipped segmentation map.
"""
seg_map = mmcv.imflip(seg_map, direction=direction)
if self.swap_seg_labels is not None:
# to handle datasets with left/right annotations
# like 'Left-arm' and 'Right-arm' in LIP dataset
# Modified from https://github.com/openseg-group/openseg.pytorch/blob/master/lib/datasets/tools/cv2_aug_transforms.py # noqa:E501
# Licensed under MIT license
temp = seg_map.copy()
assert isinstance(self.swap_seg_labels, (tuple, list))
for pair in self.swap_seg_labels:
assert isinstance(pair, (tuple, list)) and len(pair) == 2, \
'swap_seg_labels must be a sequence with pair, but got ' \
f'{self.swap_seg_labels}.'
seg_map[temp == pair[0]] = pair[1]
seg_map[temp == pair[1]] = pair[0]
return seg_map
@cache_randomness
def _choose_direction(self) -> str:
"""Choose the flip direction according to `prob` and `direction`"""
if isinstance(self.direction,
Sequence) and not isinstance(self.direction, str):
# None means non-flip
direction_list: list = list(self.direction) + [None]
elif isinstance(self.direction, str):
# None means non-flip
direction_list = [self.direction, None]
if isinstance(self.prob, list):
non_prob: float = 1 - sum(self.prob)
prob_list = self.prob + [non_prob]
elif isinstance(self.prob, float):
non_prob = 1. - self.prob
# exclude non-flip
single_ratio = self.prob / (len(direction_list) - 1)
prob_list = [single_ratio] * (len(direction_list) - 1) + [non_prob]
cur_dir = np.random.choice(direction_list, p=prob_list)
return cur_dir
def _flip(self, results: dict) -> None:
"""Flip images, bounding boxes, semantic segmentation map and
keypoints."""
# flip image
results['img'] = mmcv.imflip(
results['img'], direction=results['flip_direction'])
img_shape = results['img'].shape[:2]
# flip bboxes
if results.get('gt_bboxes', None) is not None:
results['gt_bboxes'] = self._flip_bbox(results['gt_bboxes'],
img_shape,
results['flip_direction'])
# flip keypoints
if results.get('gt_keypoints', None) is not None:
results['gt_keypoints'] = self._flip_keypoints(
results['gt_keypoints'], img_shape, results['flip_direction'])
# flip seg map
if results.get('gt_seg_map', None) is not None:
results['gt_seg_map'] = self._flip_seg_map(
results['gt_seg_map'], direction=results['flip_direction'])
results['swap_seg_labels'] = self.swap_seg_labels
def _flip_on_direction(self, results: dict) -> None:
"""Function to flip images, bounding boxes, semantic segmentation map
and keypoints."""
cur_dir = self._choose_direction()
if cur_dir is None:
results['flip'] = False
results['flip_direction'] = None
else:
results['flip'] = True
results['flip_direction'] = cur_dir
self._flip(results)
def transform(self, results: dict) -> dict:
"""Transform function to flip images, bounding boxes, semantic
segmentation map and keypoints.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Flipped results, 'img', 'gt_bboxes', 'gt_seg_map',
'gt_keypoints', 'flip', and 'flip_direction' keys are
updated in result dict.
"""
self._flip_on_direction(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(prob={self.prob}, '
repr_str += f'direction={self.direction})'
return repr_str
@TRANSFORMS.register_module()
class RandomResize(BaseTransform):
"""Random resize images & bbox & keypoints.
How to choose the target scale to resize the image will follow the rules
below:
- if ``scale`` is a sequence of tuple
.. math::
target\\_scale[0] \\sim Uniform([scale[0][0], scale[1][0]])
.. math::
target\\_scale[1] \\sim Uniform([scale[0][1], scale[1][1]])
Following the resize order of weight and height in cv2, ``scale[i][0]``
is for width, and ``scale[i][1]`` is for height.
- if ``scale`` is a tuple
.. math::
target\\_scale[0] \\sim Uniform([ratio\\_range[0], ratio\\_range[1]])
* scale[0]
.. math::
target\\_scale[1] \\sim Uniform([ratio\\_range[0], ratio\\_range[1]])
* scale[1]
Following the resize order of weight and height in cv2, ``ratio_range[0]``
is for width, and ``ratio_range[1]`` is for height.
- if ``keep_ratio`` is True, the minimum value of ``target_scale`` will be
used to set the shorter side and the maximum value will be used to
set the longer side.
- if ``keep_ratio`` is False, the value of ``target_scale`` will be used to
reisze the width and height accordingly.
Required Keys:
- img
- gt_bboxes
- gt_seg_map
- gt_keypoints
Modified Keys:
- img
- gt_bboxes
- gt_seg_map
- gt_keypoints
- img_shape
Added Keys:
- scale
- scale_factor
- keep_ratio
Args:
scale (tuple or Sequence[tuple]): Images scales for resizing.
Defaults to None.
ratio_range (tuple[float], optional): (min_ratio, max_ratio).
Defaults to None.
resize_type (str): The type of resize class to use. Defaults to
"Resize".
**resize_kwargs: Other keyword arguments for the ``resize_type``.
Note:
By defaults, the ``resize_type`` is "Resize", if it's not overwritten
by your registry, it indicates the :class:`mmcv.Resize`. And therefore,
``resize_kwargs`` accepts any keyword arguments of it, like
``keep_ratio``, ``interpolation`` and so on.
If you want to use your custom resize class, the class should accept
``scale`` argument and have ``scale`` attribution which determines the
resize shape.
"""
def __init__(
self,
scale: Union[Tuple[int, int], Sequence[Tuple[int, int]]],
ratio_range: Tuple[float, float] = None,
resize_type: str = 'Resize',
**resize_kwargs,
) -> None:
self.scale = scale
self.ratio_range = ratio_range
self.resize_cfg = dict(type=resize_type, **resize_kwargs)
# create a empty Reisize object
self.resize = TRANSFORMS.build({'scale': 0, **self.resize_cfg})
@staticmethod
def _random_sample(scales: Sequence[Tuple[int, int]]) -> tuple:
"""Private function to randomly sample a scale from a list of tuples.
Args:
scales (list[tuple]): Images scale range for sampling.
There must be two tuples in scales, which specify the lower
and upper bound of image scales.
Returns:
tuple: The targeted scale of the image to be resized.
"""
assert mmengine.is_list_of(scales, tuple) and len(scales) == 2
scale_0 = [scales[0][0], scales[1][0]]
scale_1 = [scales[0][1], scales[1][1]]
edge_0 = np.random.randint(min(scale_0), max(scale_0) + 1)
edge_1 = np.random.randint(min(scale_1), max(scale_1) + 1)
scale = (edge_0, edge_1)
return scale
@staticmethod
def _random_sample_ratio(scale: tuple, ratio_range: Tuple[float,
float]) -> tuple:
"""Private function to randomly sample a scale from a tuple.
A ratio will be randomly sampled from the range specified by
``ratio_range``. Then it would be multiplied with ``scale`` to
generate sampled scale.
Args:
scale (tuple): Images scale base to multiply with ratio.
ratio_range (tuple[float]): The minimum and maximum ratio to scale
the ``scale``.
Returns:
tuple: The targeted scale of the image to be resized.
"""
assert isinstance(scale, tuple) and len(scale) == 2
min_ratio, max_ratio = ratio_range
assert min_ratio <= max_ratio
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio
scale = int(scale[0] * ratio), int(scale[1] * ratio)
return scale
@cache_randomness
def _random_scale(self) -> tuple:
"""Private function to randomly sample an scale according to the type
of ``scale``.
Returns:
tuple: The targeted scale of the image to be resized.
"""
if mmengine.is_tuple_of(self.scale, int):
assert self.ratio_range is not None and len(self.ratio_range) == 2
scale = self._random_sample_ratio(
self.scale, # type: ignore
self.ratio_range)
elif mmengine.is_seq_of(self.scale, tuple):
scale = self._random_sample(self.scale) # type: ignore
else:
raise NotImplementedError('Do not support sampling function '
f'for "{self.scale}"')
return scale
def transform(self, results: dict) -> dict:
"""Transform function to resize images, bounding boxes, semantic
segmentation map.
Args:
results (dict): Result dict from loading pipeline.
Returns:
dict: Resized results, ``img``, ``gt_bboxes``, ``gt_semantic_seg``,
``gt_keypoints``, ``scale``, ``scale_factor``, ``img_shape``, and
``keep_ratio`` keys are updated in result dict.
"""
results['scale'] = self._random_scale()
self.resize.scale = results['scale']
results = self.resize(results)
return results
def __repr__(self) -> str:
repr_str = self.__class__.__name__
repr_str += f'(scale={self.scale}, '
repr_str += f'ratio_range={self.ratio_range}, '
repr_str += f'resize_cfg={self.resize_cfg})'
return repr_str