Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from typing import Sequence, Tuple | |
import torch | |
import torch.nn as nn | |
from mmcv.cnn import ConvModule | |
from mmengine.model import BaseModule | |
from mmdet.registry import MODELS | |
from mmdet.utils import OptMultiConfig | |
class CTResNetNeck(BaseModule): | |
"""The neck used in `CenterNet <https://arxiv.org/abs/1904.07850>`_ for | |
object classification and box regression. | |
Args: | |
in_channels (int): Number of input channels. | |
num_deconv_filters (tuple[int]): Number of filters per stage. | |
num_deconv_kernels (tuple[int]): Number of kernels per stage. | |
use_dcn (bool): If True, use DCNv2. Defaults to True. | |
init_cfg (:obj:`ConfigDict` or dict or list[dict] or | |
list[:obj:`ConfigDict`], optional): Initialization | |
config dict. | |
""" | |
def __init__(self, | |
in_channels: int, | |
num_deconv_filters: Tuple[int, ...], | |
num_deconv_kernels: Tuple[int, ...], | |
use_dcn: bool = True, | |
init_cfg: OptMultiConfig = None) -> None: | |
super().__init__(init_cfg=init_cfg) | |
assert len(num_deconv_filters) == len(num_deconv_kernels) | |
self.fp16_enabled = False | |
self.use_dcn = use_dcn | |
self.in_channels = in_channels | |
self.deconv_layers = self._make_deconv_layer(num_deconv_filters, | |
num_deconv_kernels) | |
def _make_deconv_layer( | |
self, num_deconv_filters: Tuple[int, ...], | |
num_deconv_kernels: Tuple[int, ...]) -> nn.Sequential: | |
"""use deconv layers to upsample backbone's output.""" | |
layers = [] | |
for i in range(len(num_deconv_filters)): | |
feat_channels = num_deconv_filters[i] | |
conv_module = ConvModule( | |
self.in_channels, | |
feat_channels, | |
3, | |
padding=1, | |
conv_cfg=dict(type='DCNv2') if self.use_dcn else None, | |
norm_cfg=dict(type='BN')) | |
layers.append(conv_module) | |
upsample_module = ConvModule( | |
feat_channels, | |
feat_channels, | |
num_deconv_kernels[i], | |
stride=2, | |
padding=1, | |
conv_cfg=dict(type='deconv'), | |
norm_cfg=dict(type='BN')) | |
layers.append(upsample_module) | |
self.in_channels = feat_channels | |
return nn.Sequential(*layers) | |
def init_weights(self) -> None: | |
"""Initialize the parameters.""" | |
for m in self.modules(): | |
if isinstance(m, nn.ConvTranspose2d): | |
# In order to be consistent with the source code, | |
# reset the ConvTranspose2d initialization parameters | |
m.reset_parameters() | |
# Simulated bilinear upsampling kernel | |
w = m.weight.data | |
f = math.ceil(w.size(2) / 2) | |
c = (2 * f - 1 - f % 2) / (2. * f) | |
for i in range(w.size(2)): | |
for j in range(w.size(3)): | |
w[0, 0, i, j] = \ | |
(1 - math.fabs(i / f - c)) * ( | |
1 - math.fabs(j / f - c)) | |
for c in range(1, w.size(0)): | |
w[c, 0, :, :] = w[0, 0, :, :] | |
elif isinstance(m, nn.BatchNorm2d): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
# self.use_dcn is False | |
elif not self.use_dcn and isinstance(m, nn.Conv2d): | |
# In order to be consistent with the source code, | |
# reset the Conv2d initialization parameters | |
m.reset_parameters() | |
def forward(self, x: Sequence[torch.Tensor]) -> Tuple[torch.Tensor]: | |
"""model forward.""" | |
assert isinstance(x, (list, tuple)) | |
outs = self.deconv_layers(x[-1]) | |
return outs, | |