rawalkhirodkar's picture
Add initial commit
28c256d
raw
history blame
9.27 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Tuple
import numpy as np
import torch
from torch import Tensor
# References: https://github.com/ZFTurbo/Weighted-Boxes-Fusion
def weighted_boxes_fusion(
bboxes_list: list,
scores_list: list,
labels_list: list,
weights: list = None,
iou_thr: float = 0.55,
skip_box_thr: float = 0.0,
conf_type: str = 'avg',
allows_overflow: bool = False) -> Tuple[Tensor, Tensor, Tensor]:
"""weighted boxes fusion <https://arxiv.org/abs/1910.13302> is a method for
fusing predictions from different object detection models, which utilizes
confidence scores of all proposed bounding boxes to construct averaged
boxes.
Args:
bboxes_list(list): list of boxes predictions from each model,
each box is 4 numbers.
scores_list(list): list of scores for each model
labels_list(list): list of labels for each model
weights: list of weights for each model.
Default: None, which means weight == 1 for each model
iou_thr: IoU value for boxes to be a match
skip_box_thr: exclude boxes with score lower than this variable.
conf_type: how to calculate confidence in weighted boxes.
'avg': average value,
'max': maximum value,
'box_and_model_avg': box and model wise hybrid weighted average,
'absent_model_aware_avg': weighted average that takes into
account the absent model.
allows_overflow: false if we want confidence score not exceed 1.0.
Returns:
bboxes(Tensor): boxes coordinates (Order of boxes: x1, y1, x2, y2).
scores(Tensor): confidence scores
labels(Tensor): boxes labels
"""
if weights is None:
weights = np.ones(len(bboxes_list))
if len(weights) != len(bboxes_list):
print('Warning: incorrect number of weights {}. Must be: '
'{}. Set weights equal to 1.'.format(
len(weights), len(bboxes_list)))
weights = np.ones(len(bboxes_list))
weights = np.array(weights)
if conf_type not in [
'avg', 'max', 'box_and_model_avg', 'absent_model_aware_avg'
]:
print('Unknown conf_type: {}. Must be "avg", '
'"max" or "box_and_model_avg", '
'or "absent_model_aware_avg"'.format(conf_type))
exit()
filtered_boxes = prefilter_boxes(bboxes_list, scores_list, labels_list,
weights, skip_box_thr)
if len(filtered_boxes) == 0:
return torch.Tensor(), torch.Tensor(), torch.Tensor()
overall_boxes = []
for label in filtered_boxes:
boxes = filtered_boxes[label]
new_boxes = []
weighted_boxes = np.empty((0, 8))
# Clusterize boxes
for j in range(0, len(boxes)):
index, best_iou = find_matching_box_fast(weighted_boxes, boxes[j],
iou_thr)
if index != -1:
new_boxes[index].append(boxes[j])
weighted_boxes[index] = get_weighted_box(
new_boxes[index], conf_type)
else:
new_boxes.append([boxes[j].copy()])
weighted_boxes = np.vstack((weighted_boxes, boxes[j].copy()))
# Rescale confidence based on number of models and boxes
for i in range(len(new_boxes)):
clustered_boxes = new_boxes[i]
if conf_type == 'box_and_model_avg':
clustered_boxes = np.array(clustered_boxes)
# weighted average for boxes
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(
clustered_boxes) / weighted_boxes[i, 2]
# identify unique model index by model index column
_, idx = np.unique(clustered_boxes[:, 3], return_index=True)
# rescale by unique model weights
weighted_boxes[i, 1] = weighted_boxes[i, 1] * clustered_boxes[
idx, 2].sum() / weights.sum()
elif conf_type == 'absent_model_aware_avg':
clustered_boxes = np.array(clustered_boxes)
# get unique model index in the cluster
models = np.unique(clustered_boxes[:, 3]).astype(int)
# create a mask to get unused model weights
mask = np.ones(len(weights), dtype=bool)
mask[models] = False
# absent model aware weighted average
weighted_boxes[
i, 1] = weighted_boxes[i, 1] * len(clustered_boxes) / (
weighted_boxes[i, 2] + weights[mask].sum())
elif conf_type == 'max':
weighted_boxes[i, 1] = weighted_boxes[i, 1] / weights.max()
elif not allows_overflow:
weighted_boxes[i, 1] = weighted_boxes[i, 1] * min(
len(weights), len(clustered_boxes)) / weights.sum()
else:
weighted_boxes[i, 1] = weighted_boxes[i, 1] * len(
clustered_boxes) / weights.sum()
overall_boxes.append(weighted_boxes)
overall_boxes = np.concatenate(overall_boxes, axis=0)
overall_boxes = overall_boxes[overall_boxes[:, 1].argsort()[::-1]]
bboxes = torch.Tensor(overall_boxes[:, 4:])
scores = torch.Tensor(overall_boxes[:, 1])
labels = torch.Tensor(overall_boxes[:, 0]).int()
return bboxes, scores, labels
def prefilter_boxes(boxes, scores, labels, weights, thr):
new_boxes = dict()
for t in range(len(boxes)):
if len(boxes[t]) != len(scores[t]):
print('Error. Length of boxes arrays not equal to '
'length of scores array: {} != {}'.format(
len(boxes[t]), len(scores[t])))
exit()
if len(boxes[t]) != len(labels[t]):
print('Error. Length of boxes arrays not equal to '
'length of labels array: {} != {}'.format(
len(boxes[t]), len(labels[t])))
exit()
for j in range(len(boxes[t])):
score = scores[t][j]
if score < thr:
continue
label = int(labels[t][j])
box_part = boxes[t][j]
x1 = float(box_part[0])
y1 = float(box_part[1])
x2 = float(box_part[2])
y2 = float(box_part[3])
# Box data checks
if x2 < x1:
warnings.warn('X2 < X1 value in box. Swap them.')
x1, x2 = x2, x1
if y2 < y1:
warnings.warn('Y2 < Y1 value in box. Swap them.')
y1, y2 = y2, y1
if (x2 - x1) * (y2 - y1) == 0.0:
warnings.warn('Zero area box skipped: {}.'.format(box_part))
continue
# [label, score, weight, model index, x1, y1, x2, y2]
b = [
int(label),
float(score) * weights[t], weights[t], t, x1, y1, x2, y2
]
if label not in new_boxes:
new_boxes[label] = []
new_boxes[label].append(b)
# Sort each list in dict by score and transform it to numpy array
for k in new_boxes:
current_boxes = np.array(new_boxes[k])
new_boxes[k] = current_boxes[current_boxes[:, 1].argsort()[::-1]]
return new_boxes
def get_weighted_box(boxes, conf_type='avg'):
box = np.zeros(8, dtype=np.float32)
conf = 0
conf_list = []
w = 0
for b in boxes:
box[4:] += (b[1] * b[4:])
conf += b[1]
conf_list.append(b[1])
w += b[2]
box[0] = boxes[0][0]
if conf_type in ('avg', 'box_and_model_avg', 'absent_model_aware_avg'):
box[1] = conf / len(boxes)
elif conf_type == 'max':
box[1] = np.array(conf_list).max()
box[2] = w
box[3] = -1
box[4:] /= conf
return box
def find_matching_box_fast(boxes_list, new_box, match_iou):
def bb_iou_array(boxes, new_box):
# bb intersection over union
xA = np.maximum(boxes[:, 0], new_box[0])
yA = np.maximum(boxes[:, 1], new_box[1])
xB = np.minimum(boxes[:, 2], new_box[2])
yB = np.minimum(boxes[:, 3], new_box[3])
interArea = np.maximum(xB - xA, 0) * np.maximum(yB - yA, 0)
# compute the area of both the prediction and ground-truth rectangles
boxAArea = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
boxBArea = (new_box[2] - new_box[0]) * (new_box[3] - new_box[1])
iou = interArea / (boxAArea + boxBArea - interArea)
return iou
if boxes_list.shape[0] == 0:
return -1, match_iou
boxes = boxes_list
ious = bb_iou_array(boxes[:, 4:], new_box[4:])
ious[boxes[:, 0] != new_box[0]] = -1
best_idx = np.argmax(ious)
best_iou = ious[best_idx]
if best_iou <= match_iou:
best_iou = match_iou
best_idx = -1
return best_idx, best_iou