FlowEdit / FlowEdit_utils.py
fallenshock
added files
336dbcf
from typing import Optional, Tuple, Union
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from tqdm import tqdm
import numpy as np
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import retrieve_timesteps
def scale_noise(
scheduler,
sample: torch.FloatTensor,
timestep: Union[float, torch.FloatTensor],
noise: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
"""
Foward process in flow-matching
Args:
sample (`torch.FloatTensor`):
The input sample.
timestep (`int`, *optional*):
The current timestep in the diffusion chain.
Returns:
`torch.FloatTensor`:
A scaled input sample.
"""
# if scheduler.step_index is None:
scheduler._init_step_index(timestep)
sigma = scheduler.sigmas[scheduler.step_index]
sample = sigma * noise + (1.0 - sigma) * sample
return sample
# for flux
def calculate_shift(
image_seq_len,
base_seq_len: int = 256,
max_seq_len: int = 4096,
base_shift: float = 0.5,
max_shift: float = 1.16,
):
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
b = base_shift - m * base_seq_len
mu = image_seq_len * m + b
return mu
def calc_v_sd3(pipe, src_tar_latent_model_input, src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t):
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(src_tar_latent_model_input.shape[0])
# joint_attention_kwargs = {}
# # add timestep to joint_attention_kwargs
# joint_attention_kwargs["timestep"] = timestep[0]
# joint_attention_kwargs["timestep_idx"] = i
with torch.no_grad():
# # predict the noise for the source prompt
noise_pred_src_tar = pipe.transformer(
hidden_states=src_tar_latent_model_input,
timestep=timestep,
encoder_hidden_states=src_tar_prompt_embeds,
pooled_projections=src_tar_pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
# perform guidance source
if pipe.do_classifier_free_guidance:
src_noise_pred_uncond, src_noise_pred_text, tar_noise_pred_uncond, tar_noise_pred_text = noise_pred_src_tar.chunk(4)
noise_pred_src = src_noise_pred_uncond + src_guidance_scale * (src_noise_pred_text - src_noise_pred_uncond)
noise_pred_tar = tar_noise_pred_uncond + tar_guidance_scale * (tar_noise_pred_text - tar_noise_pred_uncond)
return noise_pred_src, noise_pred_tar
def calc_v_flux(pipe, latents, prompt_embeds, pooled_prompt_embeds, guidance, text_ids, latent_image_ids, t):
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0])
# joint_attention_kwargs = {}
# # add timestep to joint_attention_kwargs
# joint_attention_kwargs["timestep"] = timestep[0]
# joint_attention_kwargs["timestep_idx"] = i
with torch.no_grad():
# # predict the noise for the source prompt
noise_pred = pipe.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
pooled_projections=pooled_prompt_embeds,
joint_attention_kwargs=None,
return_dict=False,
)[0]
return noise_pred
@torch.no_grad()
def FlowEditSD3(pipe,
scheduler,
x_src,
src_prompt,
tar_prompt,
negative_prompt,
T_steps: int = 50,
n_avg: int = 1,
src_guidance_scale: float = 3.5,
tar_guidance_scale: float = 13.5,
n_min: int = 0,
n_max: int = 15,):
device = x_src.device
timesteps, T_steps = retrieve_timesteps(scheduler, T_steps, device, timesteps=None)
num_warmup_steps = max(len(timesteps) - T_steps * scheduler.order, 0)
pipe._num_timesteps = len(timesteps)
pipe._guidance_scale = src_guidance_scale
# src prompts
(
src_prompt_embeds,
src_negative_prompt_embeds,
src_pooled_prompt_embeds,
src_negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=src_prompt,
prompt_2=None,
prompt_3=None,
negative_prompt=negative_prompt,
do_classifier_free_guidance=pipe.do_classifier_free_guidance,
device=device,
)
# tar prompts
pipe._guidance_scale = tar_guidance_scale
(
tar_prompt_embeds,
tar_negative_prompt_embeds,
tar_pooled_prompt_embeds,
tar_negative_pooled_prompt_embeds,
) = pipe.encode_prompt(
prompt=tar_prompt,
prompt_2=None,
prompt_3=None,
negative_prompt=negative_prompt,
do_classifier_free_guidance=pipe.do_classifier_free_guidance,
device=device,
)
# CFG prep
src_tar_prompt_embeds = torch.cat([src_negative_prompt_embeds, src_prompt_embeds, tar_negative_prompt_embeds, tar_prompt_embeds], dim=0)
src_tar_pooled_prompt_embeds = torch.cat([src_negative_pooled_prompt_embeds, src_pooled_prompt_embeds, tar_negative_pooled_prompt_embeds, tar_pooled_prompt_embeds], dim=0)
# initialize our ODE Zt_edit_1=x_src
zt_edit = x_src.clone()
for i, t in tqdm(enumerate(timesteps)):
if T_steps - i > n_max:
continue
t_i = t/1000
if i+1 < len(timesteps):
t_im1 = (timesteps[i+1])/1000
else:
t_im1 = torch.zeros_like(t_i).to(t_i.device)
if T_steps - i > n_min:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src)
for k in range(n_avg):
fwd_noise = torch.randn_like(x_src).to(x_src.device)
zt_src = (1-t_i)*x_src + (t_i)*fwd_noise
zt_tar = zt_edit + zt_src - x_src
src_tar_latent_model_input = torch.cat([zt_src, zt_src, zt_tar, zt_tar]) if pipe.do_classifier_free_guidance else (zt_src, zt_tar)
Vt_src, Vt_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t)
V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling for last n_min steps
if i == T_steps-n_min:
# initialize SDEDIT-style generation phase
fwd_noise = torch.randn_like(x_src).to(x_src.device)
xt_src = scale_noise(scheduler, x_src, t, noise=fwd_noise)
xt_tar = zt_edit + xt_src - x_src
src_tar_latent_model_input = torch.cat([xt_tar, xt_tar, xt_tar, xt_tar]) if pipe.do_classifier_free_guidance else (xt_src, xt_tar)
_, noise_pred_tar = calc_v_sd3(pipe, src_tar_latent_model_input,src_tar_prompt_embeds, src_tar_pooled_prompt_embeds, src_guidance_scale, tar_guidance_scale, t)
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_im1) * (noise_pred_tar)
prev_sample = prev_sample.to(noise_pred_tar.dtype)
xt_tar = prev_sample
return zt_edit if n_min == 0 else xt_tar
@torch.no_grad()
def FlowEditFLUX(pipe,
scheduler,
x_src,
src_prompt,
tar_prompt,
negative_prompt,
T_steps: int = 28,
n_avg: int = 1,
src_guidance_scale: float = 1.5,
tar_guidance_scale: float = 5.5,
n_min: int = 0,
n_max: int = 24,):
device = x_src.device
orig_height, orig_width = x_src.shape[2]*pipe.vae_scale_factor//2, x_src.shape[3]*pipe.vae_scale_factor//2
num_channels_latents = pipe.transformer.config.in_channels // 4
pipe.check_inputs(
prompt=src_prompt,
prompt_2=None,
height=orig_height,
width=orig_width,
callback_on_step_end_tensor_inputs=None,
max_sequence_length=512,
)
x_src, latent_src_image_ids = pipe.prepare_latents(batch_size= x_src.shape[0], num_channels_latents=num_channels_latents, height=orig_height, width=orig_width, dtype=x_src.dtype, device=x_src.device, generator=None,latents=x_src)
x_src_packed = pipe._pack_latents(x_src, x_src.shape[0], num_channels_latents, x_src.shape[2], x_src.shape[3])
latent_tar_image_ids = latent_src_image_ids
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / T_steps, T_steps)
image_seq_len = x_src_packed.shape[1]
mu = calculate_shift(
image_seq_len,
scheduler.config.base_image_seq_len,
scheduler.config.max_image_seq_len,
scheduler.config.base_shift,
scheduler.config.max_shift,
)
timesteps, T_steps = retrieve_timesteps(
scheduler,
T_steps,
device,
timesteps=None,
sigmas=sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - T_steps * pipe.scheduler.order, 0)
pipe._num_timesteps = len(timesteps)
# src prompts
(
src_prompt_embeds,
src_pooled_prompt_embeds,
src_text_ids,
) = pipe.encode_prompt(
prompt=src_prompt,
prompt_2=None,
device=device,
)
# tar prompts
pipe._guidance_scale = tar_guidance_scale
(
tar_prompt_embeds,
tar_pooled_prompt_embeds,
tar_text_ids,
) = pipe.encode_prompt(
prompt=tar_prompt,
prompt_2=None,
device=device,
)
# handle guidance
if pipe.transformer.config.guidance_embeds:
src_guidance = torch.tensor([src_guidance_scale], device=device)
src_guidance = src_guidance.expand(x_src_packed.shape[0])
tar_guidance = torch.tensor([tar_guidance_scale], device=device)
tar_guidance = tar_guidance.expand(x_src_packed.shape[0])
else:
src_guidance = None
tar_guidance = None
# initialize our ODE Zt_edit_1=x_src
zt_edit = x_src_packed.clone()
for i, t in tqdm(enumerate(timesteps)):
if T_steps - i > n_max:
continue
scheduler._init_step_index(t)
t_i = scheduler.sigmas[scheduler.step_index]
if i < len(timesteps):
t_im1 = scheduler.sigmas[scheduler.step_index + 1]
else:
t_im1 = t_i
if T_steps - i > n_min:
# Calculate the average of the V predictions
V_delta_avg = torch.zeros_like(x_src_packed)
for k in range(n_avg):
fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device)
zt_src = (1-t_i)*x_src_packed + (t_i)*fwd_noise
zt_tar = zt_edit + zt_src - x_src_packed
# Merge in the future to avoid double computation
Vt_src = calc_v_flux(pipe,
latents=zt_src,
prompt_embeds=src_prompt_embeds,
pooled_prompt_embeds=src_pooled_prompt_embeds,
guidance=src_guidance,
text_ids=src_text_ids,
latent_image_ids=latent_src_image_ids,
t=t)
Vt_tar = calc_v_flux(pipe,
latents=zt_tar,
prompt_embeds=tar_prompt_embeds,
pooled_prompt_embeds=tar_pooled_prompt_embeds,
guidance=tar_guidance,
text_ids=tar_text_ids,
latent_image_ids=latent_tar_image_ids,
t=t)
V_delta_avg += (1/n_avg) * (Vt_tar - Vt_src) # - (hfg-1)*( x_src))
# propagate direct ODE
zt_edit = zt_edit.to(torch.float32)
zt_edit = zt_edit + (t_im1 - t_i) * V_delta_avg
zt_edit = zt_edit.to(V_delta_avg.dtype)
else: # i >= T_steps-n_min # regular sampling last n_min steps
if i == T_steps-n_min:
# initialize SDEDIT-style generation phase
fwd_noise = torch.randn_like(x_src_packed).to(x_src_packed.device)
xt_src = scale_noise(scheduler, x_src_packed, t, noise=fwd_noise)
xt_tar = zt_edit + xt_src - x_src_packed
Vt_tar = calc_v_flux(pipe,
latents=xt_tar,
prompt_embeds=tar_prompt_embeds,
pooled_prompt_embeds=tar_pooled_prompt_embeds,
guidance=tar_guidance,
text_ids=tar_text_ids,
latent_image_ids=latent_tar_image_ids,
t=t)
xt_tar = xt_tar.to(torch.float32)
prev_sample = xt_tar + (t_im1 - t_i) * (Vt_tar)
prev_sample = prev_sample.to(Vt_tar.dtype)
xt_tar = prev_sample
out = zt_edit if n_min == 0 else xt_tar
unpacked_out = pipe._unpack_latents(out, orig_height, orig_width, pipe.vae_scale_factor)
return unpacked_out