File size: 6,922 Bytes
69620c8
 
 
 
 
 
6960db5
69620c8
31c0b50
 
 
 
6960db5
 
 
69620c8
 
 
450db89
4f076f3
69620c8
 
c1bd24e
 
69620c8
 
c401dbb
6960db5
 
 
 
 
 
 
 
 
 
 
 
69620c8
 
 
 
 
 
 
4f076f3
69620c8
 
 
6960db5
69620c8
 
 
 
 
 
 
 
 
4f076f3
69620c8
4f076f3
a1e7a82
69620c8
 
 
 
 
 
 
 
 
669c8e5
69620c8
c43703f
4f076f3
c43703f
4f076f3
c43703f
4f076f3
 
c43703f
 
 
4f076f3
 
 
 
919c50d
4f076f3
c43703f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f076f3
c43703f
 
 
 
 
 
 
 
 
 
4f076f3
c43703f
 
 
 
 
 
4f076f3
c43703f
 
4f076f3
c43703f
 
 
4f076f3
 
c43703f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f076f3
 
 
 
 
 
69620c8
 
6960db5
69620c8
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True

# ๋ฒˆ์—ญ ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)

lora_repo = "strangerzonehf/Flux-Xmas-Realpix-LoRA"
trigger_word = ""
pipe.load_lora_weights(lora_repo)

pipe.to("cuda")

MAX_SEED = 2**32-1

@spaces.GPU()
def translate_and_generate(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    # ํ•œ๊ธ€ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
    def contains_korean(text):
        return any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in text)
    
    if contains_korean(prompt):
        # ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ
        translated = translator(prompt)[0]['translation_text']
        actual_prompt = translated
    else:
        actual_prompt = prompt

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device="cuda").manual_seed(seed)

    progress(0, "Starting image generation...")

    for i in range(1, steps + 1):
        if i % (steps // 10) == 0:
            progress(i / steps * 100, f"Processing step {i} of {steps}...")

    image = pipe(
        prompt=f"{actual_prompt} {trigger_word}",
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]

    progress(100, "Completed!")
    return image, seed

example_image_path = "example0.webp"
example_prompt = """Cozy winter scene with a Christmas atmosphere: a snow-covered cabin in the forest, warm light glowing from the windows, surrounded by sparkling Christmas decorations and a beautifully adorned Christmas tree. The sky is filled with stars, and soft snowflakes are gently falling, creating a serene and warm ambiance"""
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85

def load_example():
    example_image = Image.open(example_image_path)
    return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image


css = """
.container {max-width: 1400px; margin: auto; padding: 20px;}
.header {text-align: center; margin-bottom: 30px;}
.generate-btn {background-color: #2ecc71 !important; color: white !important; margin: 20px auto !important; display: block !important; width: 200px !important;}
.generate-btn:hover {background-color: #27ae60 !important;}
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;}
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 0 auto 20px auto; text-align: center;}
.image-output {margin: 0 auto; display: block; max-width: 800px !important;}
.accordion {margin-top: 20px;}
"""

with gr.Blocks(css=css) as app:
    with gr.Column(elem_classes="container"):
        gr.Markdown("# ๐ŸŽจ X-MAS LoRA", elem_classes="header")
        
        # ์ด๋ฏธ์ง€ ์ถœ๋ ฅ ์˜์—ญ์„ ๋จผ์ € ๋ฐฐ์น˜
        with gr.Group(elem_classes="result-box"):
            gr.Markdown("### ๐Ÿ–ผ๏ธ Generated Image")
            result = gr.Image(label="Result", elem_classes="image-output")
            
        # ์ƒ์„ฑ ๋ฒ„ํŠผ
        generate_button = gr.Button(
            "๐Ÿš€ Generate Image",
            elem_classes="generate-btn"
        )
        
        # ์˜ต์…˜๋“ค์„ ์•„์ฝ”๋””์–ธ์œผ๋กœ ๊ตฌ์„ฑ
        with gr.Accordion("๐ŸŽจ Generation Options", open=False, elem_classes="accordion"):
            with gr.Group(elem_classes="parameter-box"):
                prompt = gr.TextArea(
                    label="โœ๏ธ Your Prompt (ํ•œ๊ธ€ ๋˜๋Š” ์˜์–ด)",
                    placeholder="์ด๋ฏธ์ง€๋ฅผ ์„ค๋ช…ํ•˜์„ธ์š”... (ํ•œ๊ธ€ ์ž…๋ ฅ์‹œ ์ž๋™์œผ๋กœ ์˜์–ด๋กœ ๋ฒˆ์—ญ๋ฉ๋‹ˆ๋‹ค)",
                    lines=5
                )
                
            with gr.Group(elem_classes="parameter-box"):
                gr.Markdown("### ๐ŸŽ›๏ธ Generation Parameters")
                with gr.Row():
                    with gr.Column():
                        cfg_scale = gr.Slider(
                            label="CFG Scale",
                            minimum=1,
                            maximum=20,
                            step=0.5,
                            value=example_cfg_scale
                        )
                        steps = gr.Slider(
                            label="Steps",
                            minimum=1,
                            maximum=100,
                            step=1,
                            value=example_steps
                        )
                        lora_scale = gr.Slider(
                            label="LoRA Scale",
                            minimum=0,
                            maximum=1,
                            step=0.01,
                            value=example_lora_scale
                        )
            
            with gr.Group(elem_classes="parameter-box"):
                gr.Markdown("### ๐Ÿ“ Image Dimensions")
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=1536,
                        step=64,
                        value=example_width
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=1536,
                        step=64,
                        value=example_height
                    )
            
            with gr.Group(elem_classes="parameter-box"):
                gr.Markdown("### ๐ŸŽฒ Seed Settings")
                with gr.Row():
                    randomize_seed = gr.Checkbox(
                        True,
                        label="Randomize seed"
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=example_seed
                    )

    app.load(
        load_example,
        inputs=[],
        outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
    )
    
    generate_button.click(
        translate_and_generate,
        inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed]
    )

app.queue()
app.launch()