File size: 8,893 Bytes
69620c8 6960db5 f207d6b 69620c8 31c0b50 6960db5 69620c8 450db89 4f076f3 69620c8 c1bd24e f207d6b 69620c8 c401dbb 6960db5 69620c8 4f076f3 69620c8 6960db5 69620c8 4f076f3 69620c8 4f076f3 a1e7a82 69620c8 669c8e5 69620c8 4f076f3 f207d6b 4f076f3 f207d6b 4f076f3 f207d6b 4f076f3 f207d6b c43703f f207d6b c43703f 4f076f3 c43703f 4f076f3 c43703f 4f076f3 c43703f 4f076f3 c43703f 4f076f3 69620c8 6960db5 69620c8 f207d6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
import pygame
import os
import threading
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# λ²μ λͺ¨λΈ μ΄κΈ°ν
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Xmas-Realpix-LoRA"
trigger_word = ""
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
# pygame μ΄κΈ°ν λ° μμ
μ€μ
pygame.mixer.init()
def play_music():
pygame.mixer.music.load("1.mp3")
pygame.mixer.music.play()
pygame.mixer.music.queue("2.mp3")
pygame.mixer.music.set_endevent(pygame.USEREVENT)
while True:
for event in pygame.event.get():
if event.type == pygame.USEREVENT:
pygame.mixer.music.queue("1.mp3")
pygame.mixer.music.queue("2.mp3")
# λ°°κ²½μμ
μ¬μ μμ (λ³λ μ€λ λμμ μ€ν)
music_thread = threading.Thread(target=play_music, daemon=True)
music_thread.start()
MAX_SEED = 2**32-1
@spaces.GPU()
def translate_and_generate(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# νκΈ κ°μ§ λ° λ²μ
def contains_korean(text):
return any(ord('κ°') <= ord(char) <= ord('ν£') for char in text)
if contains_korean(prompt):
# νκΈμ μμ΄λ‘ λ²μ
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting image generation...")
for i in range(1, steps + 1):
if i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
progress(100, "Completed!")
return image, seed
example_image_path = "example0.webp"
example_prompt = """Cozy winter scene with a Christmas atmosphere: a snow-covered cabin in the forest, warm light glowing from the windows, surrounded by sparkling Christmas decorations and a beautifully adorned Christmas tree. The sky is filled with stars, and soft snowflakes are gently falling, creating a serene and warm ambiance"""
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85
def load_example():
example_image = Image.open(example_image_path)
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
css = """
.container {
max-width: 1400px;
margin: auto;
padding: 20px;
position: relative;
background-image: url('file/example0.webp');
background-size: cover;
background-position: center;
min-height: 100vh;
}
.header {
text-align: center;
margin-bottom: 30px;
color: white;
text-shadow: 2px 2px 4px rgba(0,0,0,0.7);
}
.generate-btn {
background-color: #2ecc71 !important;
color: white !important;
margin: 20px auto !important;
display: block !important;
width: 200px !important;
}
.generate-btn:hover {
background-color: #27ae60 !important;
}
.parameter-box {
background-color: rgba(245, 246, 250, 0.9);
padding: 20px;
border-radius: 10px;
margin: 10px 0;
}
.result-box {
background-color: rgba(245, 246, 250, 0.9);
padding: 20px;
border-radius: 10px;
margin: 0 auto 20px auto;
text-align: center;
}
.image-output {
margin: 0 auto;
display: block;
max-width: 800px !important;
}
.accordion {
margin-top: 20px;
}
.prompt-box {
position: fixed;
top: 20px;
right: 20px;
width: 300px;
background-color: rgba(245, 246, 250, 0.9);
padding: 20px;
border-radius: 10px;
z-index: 1000;
}
@keyframes snow {
0% {
transform: translateY(0) translateX(0);
}
100% {
transform: translateY(100vh) translateX(100px);
}
}
.snowflake {
position: fixed;
top: -10px;
color: white;
font-size: 20px;
animation: snow 5s linear infinite;
}
"""
js_code = """
function createSnowflake() {
const snowflake = document.createElement('div');
snowflake.classList.add('snowflake');
snowflake.innerHTML = 'β';
snowflake.style.left = Math.random() * 100 + 'vw';
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's';
snowflake.style.opacity = Math.random();
document.body.appendChild(snowflake);
setTimeout(() => {
snowflake.remove();
}, 5000);
}
setInterval(createSnowflake, 100);
"""
with gr.Blocks(css=css) as app:
gr.HTML(f"<script>{js_code}</script>")
with gr.Column(elem_classes="container"):
gr.Markdown("# π X-MAS LoRA", elem_classes="header")
# ν둬ννΈ μ
λ ₯ λ°μ€λ₯Ό λ³λλ‘ λ°°μΉ
with gr.Group(elem_classes="prompt-box"):
prompt = gr.TextArea(
label="βοΈ Your Prompt (νκΈ λλ μμ΄)",
placeholder="μ΄λ―Έμ§λ₯Ό μ€λͺ
νμΈμ...",
lines=5
)
generate_button = gr.Button(
"π Generate Image",
elem_classes="generate-btn"
)
# μ΄λ―Έμ§ μΆλ ₯ μμ
with gr.Group(elem_classes="result-box"):
gr.Markdown("### πΌοΈ Generated Image")
result = gr.Image(label="Result", elem_classes="image-output")
# μ΅μ
λ€μ μμ½λμΈμΌλ‘ ꡬμ±
with gr.Accordion("π¨ Advanced Options", open=False, elem_classes="accordion"):
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### ποΈ Generation Parameters")
with gr.Row():
with gr.Column():
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=1,
maximum=20,
step=0.5,
value=example_cfg_scale
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=100,
step=1,
value=example_steps
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0,
maximum=1,
step=0.01,
value=example_lora_scale
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### π Image Dimensions")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=1536,
step=64,
value=example_width
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=1536,
step=64,
value=example_height
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### π² Seed Settings")
with gr.Row():
randomize_seed = gr.Checkbox(
True,
label="Randomize seed"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=example_seed
)
app.load(
load_example,
inputs=[],
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
)
generate_button.click(
translate_and_generate,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue()
app.launch(js=js_code) |