x-mas / app.py
fantos's picture
Update app.py
a1e7a82 verified
raw
history blame
6.92 kB
import spaces
import gradio as gr
import torch
from PIL import Image
from diffusers import DiffusionPipeline
import random
from transformers import pipeline
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.backends.cuda.matmul.allow_tf32 = True
# λ²ˆμ—­ λͺ¨λΈ μ΄ˆκΈ°ν™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
base_model = "black-forest-labs/FLUX.1-dev"
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
lora_repo = "strangerzonehf/Flux-Xmas-Realpix-LoRA"
trigger_word = ""
pipe.load_lora_weights(lora_repo)
pipe.to("cuda")
MAX_SEED = 2**32-1
@spaces.GPU()
def translate_and_generate(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
# ν•œκΈ€ 감지 및 λ²ˆμ—­
def contains_korean(text):
return any(ord('κ°€') <= ord(char) <= ord('힣') for char in text)
if contains_korean(prompt):
# ν•œκΈ€μ„ μ˜μ–΄λ‘œ λ²ˆμ—­
translated = translator(prompt)[0]['translation_text']
actual_prompt = translated
else:
actual_prompt = prompt
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device="cuda").manual_seed(seed)
progress(0, "Starting image generation...")
for i in range(1, steps + 1):
if i % (steps // 10) == 0:
progress(i / steps * 100, f"Processing step {i} of {steps}...")
image = pipe(
prompt=f"{actual_prompt} {trigger_word}",
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
progress(100, "Completed!")
return image, seed
example_image_path = "example0.webp"
example_prompt = """Cozy winter scene with a Christmas atmosphere: a snow-covered cabin in the forest, warm light glowing from the windows, surrounded by sparkling Christmas decorations and a beautifully adorned Christmas tree. The sky is filled with stars, and soft snowflakes are gently falling, creating a serene and warm ambiance"""
example_cfg_scale = 3.2
example_steps = 32
example_width = 1152
example_height = 896
example_seed = 3981632454
example_lora_scale = 0.85
def load_example():
example_image = Image.open(example_image_path)
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
css = """
.container {max-width: 1400px; margin: auto; padding: 20px;}
.header {text-align: center; margin-bottom: 30px;}
.generate-btn {background-color: #2ecc71 !important; color: white !important; margin: 20px auto !important; display: block !important; width: 200px !important;}
.generate-btn:hover {background-color: #27ae60 !important;}
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;}
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 0 auto 20px auto; text-align: center;}
.image-output {margin: 0 auto; display: block; max-width: 800px !important;}
.accordion {margin-top: 20px;}
"""
with gr.Blocks(css=css) as app:
with gr.Column(elem_classes="container"):
gr.Markdown("# 🎨 X-MAS LoRA", elem_classes="header")
# 이미지 좜λ ₯ μ˜μ—­μ„ λ¨Όμ € 배치
with gr.Group(elem_classes="result-box"):
gr.Markdown("### πŸ–ΌοΈ Generated Image")
result = gr.Image(label="Result", elem_classes="image-output")
# 생성 λ²„νŠΌ
generate_button = gr.Button(
"πŸš€ Generate Image",
elem_classes="generate-btn"
)
# μ˜΅μ…˜λ“€μ„ μ•„μ½”λ””μ–ΈμœΌλ‘œ ꡬ성
with gr.Accordion("🎨 Generation Options", open=False, elem_classes="accordion"):
with gr.Group(elem_classes="parameter-box"):
prompt = gr.TextArea(
label="✍️ Your Prompt (ν•œκΈ€ λ˜λŠ” μ˜μ–΄)",
placeholder="이미지λ₯Ό μ„€λͺ…ν•˜μ„Έμš”... (ν•œκΈ€ μž…λ ₯μ‹œ μžλ™μœΌλ‘œ μ˜μ–΄λ‘œ λ²ˆμ—­λ©λ‹ˆλ‹€)",
lines=5
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### πŸŽ›οΈ Generation Parameters")
with gr.Row():
with gr.Column():
cfg_scale = gr.Slider(
label="CFG Scale",
minimum=1,
maximum=20,
step=0.5,
value=example_cfg_scale
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=100,
step=1,
value=example_steps
)
lora_scale = gr.Slider(
label="LoRA Scale",
minimum=0,
maximum=1,
step=0.01,
value=example_lora_scale
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### πŸ“ Image Dimensions")
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=1536,
step=64,
value=example_width
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=1536,
step=64,
value=example_height
)
with gr.Group(elem_classes="parameter-box"):
gr.Markdown("### 🎲 Seed Settings")
with gr.Row():
randomize_seed = gr.Checkbox(
True,
label="Randomize seed"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=example_seed
)
app.load(
load_example,
inputs=[],
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
)
generate_button.click(
translate_and_generate,
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue()
app.launch()