File size: 6,790 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
import re
from pathlib import Path
import glob
from tqdm import tqdm
from contextlib import ExitStack
import datasets
import multiprocessing
from typing import cast, TextIO
from itertools import chain
import json
from concurrent.futures import ProcessPoolExecutor
from random import shuffle
from pytorch_lightning import LightningDataModule
from typing import Optional

from torch.utils.data import DataLoader


# _SPLIT_DATA_PATH = '/data1/datas/wudao_180g_split/test'
_SPLIT_DATA_PATH = '/data1/datas/wudao_180g_split'
_CACHE_SPLIT_DATA_PATH = '/data1/datas/wudao_180g_FSData'

# feats = datasets.Features({"text": datasets.Value('string')})


class BertDataGenerate(object):

    def __init__(self,
                 data_files=_SPLIT_DATA_PATH,
                 save_path=_CACHE_SPLIT_DATA_PATH,
                 train_test_validation='950,49,1',
                 num_proc=1,
                 cache=True):
        self.data_files = Path(data_files)
        if save_path:
            self.save_path = Path(save_path)
        else:
            self.save_path = self.file_check(
                Path(self.data_files.parent, self.data_files.name+'_FSDataset'),
                'save')
        self.num_proc = num_proc
        self.cache = cache
        self.split_idx = self.split_train_test_validation_index(train_test_validation)
        if cache:
            self.cache_path = self.file_check(
                Path(self.save_path.parent, 'FSDataCache', self.data_files.name), 'cache')
        else:
            self.cache_path = None

    @staticmethod
    def file_check(path, path_type):
        print(path)
        if not path.exists():
            path.mkdir(parents=True)
        print(f"Since no {path_type} directory is specified, the program will automatically create it in {path} directory.")
        return str(path)

    @staticmethod
    def split_train_test_validation_index(train_test_validation):
        split_idx_ = [int(i) for i in train_test_validation.split(',')]
        idx_dict = {
            'train_rate': split_idx_[0]/sum(split_idx_),
            'test_rate': split_idx_[1]/sum(split_idx_[1:])
        }
        return idx_dict

    def process(self, index, path):
        print('saving dataset shard {}'.format(index))

        ds = (datasets.load_dataset('json', data_files=str(path),
                                    cache_dir=self.cache_path,
                                    features=None))
        # ds = ds.map(self.cut_sent,input_columns='text')
        # print(d)
        # print('!!!',ds)
        ds = ds['train'].train_test_split(train_size=self.split_idx['train_rate'])
        ds_ = ds['test'].train_test_split(train_size=self.split_idx['test_rate'])
        ds = datasets.DatasetDict({
            'train': ds['train'],
            'test': ds_['train'],
            'validation': ds_['test']
        })
        # print('!!!!',ds)
        ds.save_to_disk(Path(self.save_path, path.name))
        return 'saving dataset shard {} done'.format(index)

    def generate_cache_arrow(self) -> None:
        '''
        生成HF支持的缓存文件,加速后续的加载
        '''
        data_dict_paths = self.data_files.rglob('*')
        p = ProcessPoolExecutor(max_workers=self.num_proc)
        res = list()

        for index, path in enumerate(data_dict_paths):
            res.append(p.submit(self.process, index, path))

        p.shutdown(wait=True)
        for future in res:
            print(future.result(), flush=True)


def load_dataset(num_proc=4, **kargs):
    cache_dict_paths = Path(_CACHE_SPLIT_DATA_PATH).glob('*')
    ds = []
    res = []
    p = ProcessPoolExecutor(max_workers=num_proc)
    for path in cache_dict_paths:
        res.append(p.submit(datasets.load_from_disk,
                            str(path), **kargs))

    p.shutdown(wait=True)
    for future in res:
        ds.append(future.result())
        # print(future.result())
    train = []
    test = []
    validation = []
    for ds_ in ds:
        train.append(ds_['train'])
        test.append(ds_['test'])
        validation.append(ds_['validation'])
    # ds = datasets.concatenate_datasets(ds)
    # print(ds)
    return datasets.DatasetDict({
        'train': datasets.concatenate_datasets(train),
        'test': datasets.concatenate_datasets(test),
        'validation': datasets.concatenate_datasets(validation)
    })


class BertDataModule(LightningDataModule):
    @ staticmethod
    def add_data_specific_args(parent_args):
        parser = parent_args.add_argument_group('Universal DataModule')
        parser.add_argument('--num_workers', default=8, type=int)
        parser.add_argument('--train_batchsize', default=32, type=int)
        parser.add_argument('--val_batchsize', default=32, type=int)
        parser.add_argument('--test_batchsize', default=32, type=int)
        parser.add_argument('--datasets_name', type=str)
        # parser.add_argument('--datasets_name', type=str)
        parser.add_argument('--train_datasets_field', type=str, default='train')
        parser.add_argument('--val_datasets_field', type=str, default='validation')
        parser.add_argument('--test_datasets_field', type=str, default='test')
        return parent_args

    def __init__(
        self,
        tokenizer,
        collate_fn,
        args,
        **kwargs,
    ):
        super().__init__()
        self.datasets = load_dataset(num_proc=args.num_workers)
        self.tokenizer = tokenizer
        self.collate_fn = collate_fn
        self.save_hyperparameters(args)

    def setup(self, stage: Optional[str] = None) -> None:
        self.train = DataLoader(
            self.datasets[self.hparams.train_datasets_field],
            batch_size=self.hparams.train_batchsize,
            shuffle=True,
            num_workers=self.hparams.num_workers,
            collate_fn=self.collate_fn,
        )
        self.val = DataLoader(
            self.datasets[self.hparams.val_datasets_field],
            batch_size=self.hparams.val_batchsize,
            shuffle=False,
            num_workers=self.hparams.num_workers,
            collate_fn=self.collate_fn,
        )
        self.test = DataLoader(
            self.datasets[self.hparams.test_datasets_field],
            batch_size=self.hparams.test_batchsize,
            shuffle=False,
            num_workers=self.hparams.num_workers,
            collate_fn=self.collate_fn,
        )
        return

    def train_dataloader(self):
        return self.train

    def val_dataloader(self):
        return self.val

    def test_dataloader(self):
        return self.test


if __name__ == '__main__':
    # pre = PreProcessing(_SPLIT_DATA_PATH)
    # pre.processing()

    dataset = BertDataGenerate(_SPLIT_DATA_PATH, num_proc=16)
    dataset.generate_cache_arrow()