File size: 2,208 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Blendable dataset."""

import time

import numpy as np
import torch

from fengshen.data.megatron_dataloader.utils import print_rank_0


class BlendableDataset(torch.utils.data.Dataset):

    def __init__(self, datasets, weights):

        self.datasets = datasets
        num_datasets = len(datasets)
        assert num_datasets == len(weights)

        self.size = 0
        for dataset in self.datasets:
            self.size += len(dataset)

        # Normalize weights.
        weights = np.array(weights, dtype=np.float64)
        sum_weights = np.sum(weights)
        assert sum_weights > 0.0
        weights /= sum_weights

        # Build indecies.
        start_time = time.time()
        assert num_datasets < 255
        self.dataset_index = np.zeros(self.size, dtype=np.uint8)
        self.dataset_sample_index = np.zeros(self.size, dtype=np.int64)

        from fengshen.data.megatron_dataloader import helpers
        helpers.build_blending_indices(self.dataset_index,
                                       self.dataset_sample_index,
                                       weights, num_datasets, self.size,
                                       torch.distributed.get_rank() == 0)
        print_rank_0('> elapsed time for building blendable dataset indices: '
                     '{:.2f} (sec)'.format(time.time() - start_time))

    def __len__(self):
        return self.size

    def __getitem__(self, idx):
        dataset_idx = self.dataset_index[idx]
        sample_idx = self.dataset_sample_index[idx]
        return self.datasets[dataset_idx][sample_idx]