|
import math |
|
import torch |
|
import torch.nn as nn |
|
from einops import rearrange |
|
from typing import List, Tuple |
|
|
|
from models_diffusers.camera.motion_module import TemporalTransformerBlock |
|
|
|
|
|
def get_parameter_dtype(parameter: torch.nn.Module): |
|
try: |
|
params = tuple(parameter.parameters()) |
|
if len(params) > 0: |
|
return params[0].dtype |
|
|
|
buffers = tuple(parameter.buffers()) |
|
if len(buffers) > 0: |
|
return buffers[0].dtype |
|
|
|
except StopIteration: |
|
|
|
|
|
def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, torch.Tensor]]: |
|
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] |
|
return tuples |
|
|
|
gen = parameter._named_members(get_members_fn=find_tensor_attributes) |
|
first_tuple = next(gen) |
|
return first_tuple[1].dtype |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
class PoseAdaptor(nn.Module): |
|
def __init__(self, unet, pose_encoder): |
|
super().__init__() |
|
self.unet = unet |
|
self.pose_encoder = pose_encoder |
|
|
|
def forward(self, inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids, pose_embedding): |
|
assert pose_embedding.ndim == 5 |
|
pose_embedding_features = self.pose_encoder(pose_embedding) |
|
noise_pred = self.unet( |
|
inp_noisy_latents, |
|
timesteps, |
|
encoder_hidden_states, |
|
added_time_ids=added_time_ids, |
|
pose_features=pose_embedding_features, |
|
).sample |
|
|
|
return noise_pred |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
|
|
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): |
|
super().__init__() |
|
ps = ksize // 2 |
|
if in_c != out_c or sk == False: |
|
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) |
|
else: |
|
self.in_conv = None |
|
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) |
|
self.act = nn.ReLU() |
|
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) |
|
if sk == False: |
|
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) |
|
else: |
|
self.skep = None |
|
|
|
self.down = down |
|
if self.down == True: |
|
self.down_opt = Downsample(in_c, use_conv=use_conv) |
|
|
|
def forward(self, x): |
|
if self.down == True: |
|
x = self.down_opt(x) |
|
if self.in_conv is not None: |
|
x = self.in_conv(x) |
|
|
|
h = self.block1(x) |
|
h = self.act(h) |
|
h = self.block2(h) |
|
if self.skep is not None: |
|
return h + self.skep(x) |
|
else: |
|
return h + x |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
dropout=0., |
|
max_len=32, |
|
): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2, ...] = torch.sin(position * div_term) |
|
pe[0, :, 1::2, ...] = torch.cos(position * div_term) |
|
pe.unsqueeze_(-1).unsqueeze_(-1) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1), ...] |
|
return self.dropout(x) |
|
|
|
|
|
class CameraPoseEncoder(nn.Module): |
|
|
|
def __init__(self, |
|
downscale_factor, |
|
channels=[320, 640, 1280, 1280], |
|
nums_rb=3, |
|
cin=64, |
|
ksize=3, |
|
sk=False, |
|
use_conv=True, |
|
compression_factor=1, |
|
temporal_attention_nhead=8, |
|
attention_block_types=("Temporal_Self", ), |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=16, |
|
rescale_output_factor=1.0): |
|
super(CameraPoseEncoder, self).__init__() |
|
self.unshuffle = nn.PixelUnshuffle(downscale_factor) |
|
self.channels = channels |
|
self.nums_rb = nums_rb |
|
self.encoder_down_conv_blocks = nn.ModuleList() |
|
self.encoder_down_attention_blocks = nn.ModuleList() |
|
for i in range(len(channels)): |
|
conv_layers = nn.ModuleList() |
|
temporal_attention_layers = nn.ModuleList() |
|
for j in range(nums_rb): |
|
if j == 0 and i != 0: |
|
in_dim = channels[i - 1] |
|
out_dim = int(channels[i] / compression_factor) |
|
conv_layer = ResnetBlock(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv) |
|
elif j == 0: |
|
in_dim = channels[0] |
|
out_dim = int(channels[i] / compression_factor) |
|
conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) |
|
elif j == nums_rb - 1: |
|
in_dim = channels[i] / compression_factor |
|
out_dim = channels[i] |
|
conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) |
|
else: |
|
in_dim = int(channels[i] / compression_factor) |
|
out_dim = int(channels[i] / compression_factor) |
|
conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) |
|
temporal_attention_layer = TemporalTransformerBlock(dim=out_dim, |
|
num_attention_heads=temporal_attention_nhead, |
|
attention_head_dim=int(out_dim / temporal_attention_nhead), |
|
attention_block_types=attention_block_types, |
|
dropout=0.0, |
|
cross_attention_dim=None, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
rescale_output_factor=rescale_output_factor) |
|
conv_layers.append(conv_layer) |
|
temporal_attention_layers.append(temporal_attention_layer) |
|
self.encoder_down_conv_blocks.append(conv_layers) |
|
self.encoder_down_attention_blocks.append(temporal_attention_layers) |
|
|
|
self.encoder_conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) |
|
|
|
@property |
|
def dtype(self) -> torch.dtype: |
|
""" |
|
`torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). |
|
""" |
|
return get_parameter_dtype(self) |
|
|
|
def forward(self, x): |
|
|
|
bs = x.shape[0] |
|
x = rearrange(x, "b f c h w -> (b f) c h w") |
|
x = self.unshuffle(x) |
|
|
|
features = [] |
|
x = self.encoder_conv_in(x) |
|
for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks): |
|
for res_layer, attention_layer in zip(res_block, attention_block): |
|
x = res_layer(x) |
|
h, w = x.shape[-2:] |
|
x = rearrange(x, '(b f) c h w -> (b h w) f c', b=bs) |
|
x = attention_layer(x) |
|
x = rearrange(x, '(b h w) f c -> (b f) c h w', h=h, w=w) |
|
features.append(rearrange(x, '(b f) c h w -> b c f h w', b=bs)) |
|
return features |
|
|