FlipSketch / text2vid_torch2.py
fffiloni's picture
Import torch2 adaptation file
9c8a803 verified
raw
history blame
29.4 kB
from typing import Any, Callable, Dict, List, Optional, Union
import numpy as np
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.image_processor import VaeImageProcessor
from diffusers.models import AutoencoderKL, UNet3DConditionModel
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (deprecate,
logging,
replace_example_docstring)
from diffusers.pipelines.text_to_video_synthesis import TextToVideoSDPipelineOutput
from torch.nn import functional as F
from diffusers.models.attention_processor import Attention
import math
TAU_2 = 15
TAU_1 = 10
def init_attention_params(unet, num_frames, lambda_=None, bs=None):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.processor.LAMBDA = lambda_
module.processor.bs = bs
module.processor.num_frames = num_frames
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0,
is_causal=False, scale=None, enable_gqa=False, k1 = None, d_l = None) -> torch.Tensor:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype).to(query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
if enable_gqa:
if k1 is not None and d_l is not None:
k1 = k1.repeat_interleave(query.size(-3)//k1.size(-3), -3)
key = key.repeat_interleave(query.size(-3)//key.size(-3), -3)
value = value.repeat_interleave(query.size(-3)//value.size(-3), -3)
if k1 is not None:
attn_k1 = query @ k1.transpose(-2, -1)
attn_weight = query @ key.transpose(-2, -1)
attn_weight[:,:len(d_l),0] = attn_k1[:,:len(d_l),0] * d_l
attn_weight = attn_weight * scale_factor
else:
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query, key, d_l, k1 = self.get_qk(query, key)
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if d_l is not None:
k1 = k1.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False, k1 = k1, d_l = d_l
)
else:
hidden_states = scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def get_qk(
self, query, key):
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
q_old = query.clone()
k_old = key.clone()
dynamic_lambda = None
key1 = None
if self.use_last_attn_slice:# and self.last_attn_slice[0].shape[0] == query.shape[0]:# and query.shape[1]==self.num_frames:
if self.last_attn_slice is not None:
query_list = self.last_attn_slice[0]
key_list = self.last_attn_slice[1]
if query.shape[1] == self.num_frames and query.shape == key.shape:
key1 = key.clone()
key1[:,:1,:key_list.shape[2]] = key_list[:,:1]
dynamic_lambda = torch.tensor([1 + self.LAMBDA * (i/50) for i in range(self.num_frames)]).to(key.dtype).cuda()
if q_old.shape == k_old.shape and q_old.shape[1]!=self.num_frames:
batch_dim = query_list.shape[0] // self.bs
all_dim = query.shape[0] // self.bs
for i in range(self.bs):
query[i*all_dim:(i*all_dim) + batch_dim,:query_list.shape[1],:query_list.shape[2]] = query_list[i*batch_dim:(i+1)*batch_dim]
if self.save_last_attn_slice:
self.last_attn_slice = [
query,
key,
]
self.save_last_attn_slice = False
return query, key, dynamic_lambda, key1
def init_attention_func(unet):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention":
module.set_processor(AttnProcessor2_0())
module.processor.last_attn_slice = None
module.processor.use_last_attn_slice = False
module.processor.save_last_attn_slice = False
module.processor.LAMBDA = 0
module.processor.num_frames = None
module.processor.bs = 0
return unet
def use_last_self_attention(unet, use=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.use_last_attn_slice = use
def save_last_self_attention(unet, save=True):
for name, module in unet.named_modules():
module_name = type(module).__name__
if module_name == "Attention" and "attn1" in name:
module.processor.save_last_attn_slice = save
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
EXAMPLE_DOC_STRING = """
Examples:
```py
>>> import torch
>>> from diffusers import TextToVideoSDPipeline
>>> from diffusers.utils import export_to_video
>>> pipe = TextToVideoSDPipeline.from_pretrained(
... "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
... )
>>> pipe.enable_model_cpu_offload()
>>> prompt = "Spiderman is surfing"
>>> video_frames = pipe(prompt).frames[0]
>>> video_path = export_to_video(video_frames)
>>> video_path
```
"""
# Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid
def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"):
batch_size, channels, num_frames, height, width = video.shape
outputs = []
for batch_idx in range(batch_size):
batch_vid = video[batch_idx].permute(1, 0, 2, 3)
batch_output = processor.postprocess(batch_vid, output_type)
outputs.append(batch_output)
if output_type == "np":
outputs = np.stack(outputs)
elif output_type == "pt":
outputs = torch.stack(outputs)
elif not output_type == "pil":
raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']")
return outputs
from diffusers import TextToVideoSDPipeline
class TextToVideoSDPipelineModded(TextToVideoSDPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet3DConditionModel,
scheduler: KarrasDiffusionSchedulers,
):
super().__init__(vae, text_encoder, tokenizer, unet, scheduler)
def call_network(self,
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
):
inv_latent_model_input = inv_latents
inv_latent_model_input = self.scheduler.scale_model_input(inv_latent_model_input, t)
latent_model_input = latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if do_classifier_free_guidance:
noise_pred_uncond = self.unet(
latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
noise_null_pred_uncond = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=negative_prompt_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if i<=TAU_2:
save_last_self_attention(self.unet)
noise_null_pred = self.unet(
inv_latent_model_input,
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
if do_classifier_free_guidance:
noise_null_pred = noise_null_pred_uncond + guidance_scale * (noise_null_pred - noise_null_pred_uncond)
bsz, channel, frames, width, height = inv_latents.shape
inv_latents = inv_latents.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
noise_null_pred = noise_null_pred.permute(0, 2, 1, 3, 4).reshape(bsz*frames, channel, height, width)
inv_latents = self.scheduler.step(noise_null_pred, t, inv_latents, **extra_step_kwargs).prev_sample
inv_latents = inv_latents[None, :].reshape((bsz, frames , -1) + inv_latents.shape[2:]).permute(0, 2, 1, 3, 4)
use_last_self_attention(self.unet)
else:
noise_null_pred = None
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
use_last_self_attention(self.unet, False)
if do_classifier_free_guidance:
noise_pred_text = noise_pred
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# reshape latents
bsz, channel, frames, width, height = latents.shape
latents = latents.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(bsz * frames, channel, width, height)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# reshape latents back
latents = latents[None, :].reshape(bsz, frames, channel, width, height).permute(0, 2, 1, 3, 4)
return {
"latents": latents,
"inv_latents": inv_latents,
"noise_pred": noise_pred,
"noise_null_pred": noise_null_pred,
}
def optimize_latents(self, latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds):
inv_scaled = self.scheduler.scale_model_input(inv_latents, t)
noise_null_pred = self.unet(
inv_scaled[:,:,0:1,:,:],
t,
encoder_hidden_states=null_embeds,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
with torch.enable_grad():
latent_train = latents[:,:,1:,:,:].clone().detach().requires_grad_(True)
optimizer = torch.optim.Adam([latent_train], lr=1e-3)
for j in range(10):
latent_in = torch.cat([inv_latents[:,:,0:1,:,:].detach(), latent_train], dim=2)
latent_input_unet = self.scheduler.scale_model_input(latent_in, t)
noise_pred = self.unet(
latent_input_unet,
t,
encoder_hidden_states=prompt_embeds, # For unconditional guidance
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
loss = torch.nn.functional.mse_loss(noise_pred[:,:,0,:,:], noise_null_pred[:,:,0,:,:])
loss.backward()
optimizer.step()
optimizer.zero_grad()
print("Iteration {} Subiteration {} Loss {} ".format(i, j, loss.item()))
latents = latent_in.detach()
return latents
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_frames: int = 16,
num_inference_steps: int = 50,
guidance_scale: float = 9.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
inv_latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: int = 1,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: Optional[int] = None,
lambda_ = 0.5,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The height in pixels of the generated video.
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
The width in pixels of the generated video.
num_frames (`int`, *optional*, defaults to 16):
The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds
amounts to 2 seconds of video.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality videos at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`. Latents should be of shape
`(batch_size, num_channel, num_frames, height, width)`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated video. Choose between `torch.FloatTensor` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] instead
of a plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
clip_skip (`int`, *optional*):
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
the output of the pre-final layer will be used for computing the prompt embeddings.
Examples:
Returns:
[`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput`] is
returned, otherwise a `tuple` is returned where the first element is a list with the generated frames.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
num_images_per_prompt = 1
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
)
# # 2. Define call parameters
# if prompt is not None and isinstance(prompt, str):
# batch_size = 1
# elif prompt is not None and isinstance(prompt, list):
# batch_size = len(prompt)
# else:
# batch_size = prompt_embeds.shape[0]
batch_size = inv_latents.shape[0]
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
[prompt] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
null_embeds, negative_prompt_embeds = self.encode_prompt(
[""] * batch_size,
device,
num_images_per_prompt,
do_classifier_free_guidance,
[negative_prompt] * batch_size if negative_prompt is not None else None,
prompt_embeds=None,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=clip_skip,
)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
inv_latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
num_frames,
height,
width,
prompt_embeds.dtype,
device,
generator,
inv_latents,
)
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
# 7. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
init_attention_func(self.unet)
print("Setup for Current Run")
print("----------------------")
print("Prompt ", prompt)
print("Batch size ", batch_size)
print("Num frames ", latents.shape[2])
print("Lambda ", lambda_)
init_attention_params(self.unet, num_frames=latents.shape[2], lambda_=lambda_, bs = batch_size)
iters_to_alter = [-1]#i for i in range(0, TAU_1)]
with self.progress_bar(total=num_inference_steps) as progress_bar:
mask_in = torch.zeros(latents.shape).to(dtype=latents.dtype, device=latents.device)
mask_in[:, :, 0, :, :] = 1
assert latents.shape[0] == inv_latents.shape[0], "Latents and Inverse Latents should have the same batch but got {} and {}".format(latents.shape[0], inv_latents.shape[0])
inv_latents = inv_latents.repeat(1,1,num_frames,1,1)
latents = inv_latents * mask_in + latents * (1-mask_in)
for i, t in enumerate(timesteps):
curr_copy = max(1,num_frames - i)
inv_latents = inv_latents[:,:,:curr_copy, :, : ]
if i in iters_to_alter:
latents = self.optimize_latents(latents, inv_latents, t, i, null_embeds, cross_attention_kwargs, prompt_embeds)
output_dict = self.call_network(
negative_prompt_embeds,
prompt_embeds,
latents,
inv_latents,
t,
i,
null_embeds,
cross_attention_kwargs,
extra_step_kwargs,
do_classifier_free_guidance,
guidance_scale,
)
latents = output_dict["latents"]
inv_latents = output_dict["inv_latents"]
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
# 8. Post processing
if output_type == "latent":
video = latents
else:
video_tensor = self.decode_latents(latents)
video = tensor2vid(video_tensor, self.image_processor, output_type)
# 9. Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return TextToVideoSDPipelineOutput(frames=video)