Spaces:
Running
on
L40S
Running
on
L40S
import torch.nn as nn | |
import torch.nn.functional as F | |
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): | |
"""3x3 convolution with padding""" | |
return nn.Conv2d(in_planes, | |
out_planes, | |
kernel_size=3, | |
stride=stride, | |
padding=dilation, | |
groups=groups, | |
bias=False, | |
dilation=dilation) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
groups=1, | |
base_width=64, | |
dilation=1, | |
norm_layer=None, | |
dcn=None): | |
super(BasicBlock, self).__init__() | |
if norm_layer is None: | |
norm_layer = nn.BatchNorm2d | |
if groups != 1 or base_width != 64: | |
raise ValueError( | |
'BasicBlock only supports groups=1 and base_width=64') | |
if dilation > 1: | |
raise NotImplementedError( | |
"Dilation > 1 not supported in BasicBlock") | |
# Both self.conv1 and self.downsample layers downsample the input when stride != 1 | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = norm_layer(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = norm_layer(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
identity = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
identity = self.downsample(x) | |
out += identity | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, | |
inplanes, | |
planes, | |
stride=1, | |
downsample=None, | |
norm_layer=nn.BatchNorm2d, | |
dcn=None): | |
super(Bottleneck, self).__init__() | |
self.dcn = dcn | |
self.with_dcn = dcn is not None | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = norm_layer(planes, momentum=0.1) | |
self.conv2 = nn.Conv2d(planes, | |
planes, | |
kernel_size=3, | |
stride=stride, | |
padding=1, | |
bias=False) | |
self.bn2 = norm_layer(planes, momentum=0.1) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = norm_layer(planes * 4, momentum=0.1) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = F.relu(self.bn1(self.conv1(x)), inplace=True) | |
if not self.with_dcn: | |
out = F.relu(self.bn2(self.conv2(out)), inplace=True) | |
elif self.with_modulated_dcn: | |
offset_mask = self.conv2_offset(out) | |
offset = offset_mask[:, :18 * self.deformable_groups, :, :] | |
mask = offset_mask[:, -9 * self.deformable_groups:, :, :] | |
mask = mask.sigmoid() | |
out = F.relu(self.bn2(self.conv2(out, offset, mask))) | |
else: | |
offset = self.conv2_offset(out) | |
out = F.relu(self.bn2(self.conv2(out, offset)), inplace=True) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = F.relu(out) | |
return out | |
class ResNet(nn.Module): | |
""" ResNet """ | |
def __init__(self, | |
architecture, | |
norm_layer=nn.BatchNorm2d, | |
dcn=None, | |
stage_with_dcn=(False, False, False, False)): | |
super(ResNet, self).__init__() | |
self._norm_layer = norm_layer | |
assert architecture in [ | |
"resnet18", "resnet34", "resnet50", "resnet101", 'resnet152' | |
] | |
layers = { | |
'resnet18': [2, 2, 2, 2], | |
'resnet34': [3, 4, 6, 3], | |
'resnet50': [3, 4, 6, 3], | |
'resnet101': [3, 4, 23, 3], | |
'resnet152': [3, 8, 36, 3], | |
} | |
self.inplanes = 64 | |
if architecture == "resnet18" or architecture == 'resnet34': | |
self.block = BasicBlock | |
else: | |
self.block = Bottleneck | |
self.layers = layers[architecture] | |
self.conv1 = nn.Conv2d(3, | |
64, | |
kernel_size=7, | |
stride=2, | |
padding=3, | |
bias=False) | |
self.bn1 = norm_layer(64, eps=1e-5, momentum=0.1, affine=True) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
stage_dcn = [dcn if with_dcn else None for with_dcn in stage_with_dcn] | |
self.layer1 = self.make_layer(self.block, | |
64, | |
self.layers[0], | |
dcn=stage_dcn[0]) | |
self.layer2 = self.make_layer(self.block, | |
128, | |
self.layers[1], | |
stride=2, | |
dcn=stage_dcn[1]) | |
self.layer3 = self.make_layer(self.block, | |
256, | |
self.layers[2], | |
stride=2, | |
dcn=stage_dcn[2]) | |
self.layer4 = self.make_layer(self.block, | |
512, | |
self.layers[3], | |
stride=2, | |
dcn=stage_dcn[3]) | |
def forward(self, x): | |
x = self.maxpool(self.relu(self.bn1(self.conv1(x)))) # 64 * h/4 * w/4 | |
x = self.layer1(x) # 256 * h/4 * w/4 | |
x = self.layer2(x) # 512 * h/8 * w/8 | |
x = self.layer3(x) # 1024 * h/16 * w/16 | |
x = self.layer4(x) # 2048 * h/32 * w/32 | |
return x | |
def stages(self): | |
return [self.layer1, self.layer2, self.layer3, self.layer4] | |
def make_layer(self, block, planes, blocks, stride=1, dcn=None): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False), | |
self._norm_layer(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block(self.inplanes, | |
planes, | |
stride, | |
downsample, | |
norm_layer=self._norm_layer, | |
dcn=dcn)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block(self.inplanes, | |
planes, | |
norm_layer=self._norm_layer, | |
dcn=dcn)) | |
return nn.Sequential(*layers) | |