PSHuman / app.py
fffiloni's picture
Update app.py
48640c5 verified
raw
history blame
6.09 kB
import torch
import os
import shutil
import tempfile
import gradio as gr
from PIL import Image
from rembg import remove
import sys
import uuid
import subprocess
from glob import glob
import requests
from huggingface_hub import snapshot_download
# Download models
os.makedirs("ckpts", exist_ok=True)
snapshot_download(
repo_id = "pengHTYX/PSHuman_Unclip_768_6views",
local_dir = "./ckpts"
)
os.makedirs("smpl_related", exist_ok=True)
snapshot_download(
repo_id = "fffiloni/PSHuman-SMPL-related",
local_dir = "./smpl_related"
)
# Folder containing example images
examples_folder = "examples"
# Retrieve all file paths in the folder
images_examples = [
os.path.join(examples_folder, file)
for file in os.listdir(examples_folder)
if os.path.isfile(os.path.join(examples_folder, file))
]
def remove_background(input_url):
# Create a temporary folder for downloaded and processed images
temp_dir = tempfile.mkdtemp()
# Download the image from the URL
image_path = os.path.join(temp_dir, 'input_image.png')
try:
image = Image.open(input_url)
# Ensure the image has an alpha channel
if image.mode != 'RGBA':
image = image.convert('RGBA')
# Resize the image to a max width of 512 pixels while maintaining aspect ratio
max_width = 512
if image.width > max_width:
aspect_ratio = image.height / image.width
new_height = int(max_width * aspect_ratio)
image = image.resize((max_width, new_height), Image.ANTIALIAS)
# Save the resized image
image.save(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
return f"Error downloading or saving the image: {str(e)}"
# Run background removal
try:
unique_id = str(uuid.uuid4())
removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png')
img = Image.open(image_path)
result = remove(img)
result.save(removed_bg_path)
# Remove the input image to keep the temp directory clean
os.remove(image_path)
except Exception as e:
shutil.rmtree(temp_dir)
return f"Error removing background: {str(e)}"
return removed_bg_path, temp_dir
def run_inference(temp_dir, removed_bg_path):
# Define the inference configuration
inference_config = "configs/inference-768-6view.yaml"
pretrained_model = "./ckpts"
crop_size = 740
seed = 600
num_views = 7
save_mode = "rgb"
try:
# Run the inference command
subprocess.run(
[
"python", "inference.py",
"--config", inference_config,
f"pretrained_model_name_or_path={pretrained_model}",
f"validation_dataset.crop_size={crop_size}",
f"with_smpl=false",
f"validation_dataset.root_dir={temp_dir}",
f"seed={seed}",
f"num_views={num_views}",
f"save_mode={save_mode}"
],
check=True
)
# Retrieve the file name without the extension
removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0]
output_videos = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4"))
return output_videos
except subprocess.CalledProcessError as e:
return f"Error during inference: {str(e)}"
def process_image(input_url):
# Remove background
result = remove_background(input_url)
if isinstance(result, str) and result.startswith("Error"):
raise gr.Error(f"{result}") # Return the error message if something went wrong
removed_bg_path, temp_dir = result # Unpack only if successful
# Run inference
output_video = run_inference(temp_dir, removed_bg_path)
if isinstance(output_video, str) and output_video.startswith("Error"):
shutil.rmtree(temp_dir)
raise gr.Error(f"{output_video}") # Return the error message if inference failed
shutil.rmtree(temp_dir) # Cleanup temporary folder
print(output_video)
return output_video[0]
def gradio_interface():
with gr.Blocks() as app:
gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/pengHTYX/PSHuman">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://penghtyx.github.io/PSHuman/">
<img src='https://img.shields.io/badge/Project-Page-green'>
</a>
<a href="https://arxiv.org/pdf/2409.10141">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/PSHuman?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(
label="Image input",
type="filepath",
height=240
)
submit_button = gr.Button("Process")
gr.Examples(
examples = examples_folder,
inputs = [input_image],
examples_per_page = 4
)
output_video= gr.Video(label="Output Video", scale=4)
submit_button.click(process_image, inputs=[input_image], outputs=[output_video])
return app
# Launch the Gradio app
app = gradio_interface()
app.launch(show_api=False, show_error=True)