Spaces:
Running
on
L40S
Running
on
L40S
# -*- coding: utf-8 -*- | |
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
# holder of all proprietary rights on this computer program. | |
# You can only use this computer program if you have closed | |
# a license agreement with MPG or you get the right to use the computer | |
# program from someone who is authorized to grant you that right. | |
# Any use of the computer program without a valid license is prohibited and | |
# liable to prosecution. | |
# | |
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
# for Intelligent Systems. All rights reserved. | |
# | |
# Contact: ps-license@tuebingen.mpg.de | |
import torch | |
def index(feat, uv): | |
''' | |
:param feat: [B, C, H, W] image features | |
:param uv: [B, 2, N] uv coordinates in the image plane, range [0, 1] | |
:return: [B, C, N] image features at the uv coordinates | |
''' | |
uv = uv.transpose(1, 2) # [B, N, 2] | |
(B, N, _) = uv.shape | |
C = feat.shape[1] | |
if uv.shape[-1] == 3: | |
# uv = uv[:,:,[2,1,0]] | |
# uv = uv * torch.tensor([1.0,-1.0,1.0]).type_as(uv)[None,None,...] | |
uv = uv.unsqueeze(2).unsqueeze(3) # [B, N, 1, 1, 3] | |
else: | |
uv = uv.unsqueeze(2) # [B, N, 1, 2] | |
# NOTE: for newer PyTorch, it seems that training results are degraded due to implementation diff in F.grid_sample | |
# for old versions, simply remove the aligned_corners argument. | |
samples = torch.nn.functional.grid_sample( | |
feat, uv, align_corners=True) # [B, C, N, 1] | |
#samples = grid_sample(feat, uv) # [B, C, N, 1] | |
return samples.view(B, C, N) # [B, C, N] | |
def grid_sample(image, optical): | |
N, C, IH, IW = image.shape | |
_, H, W, _ = optical.shape | |
ix = optical[..., 0] | |
iy = optical[..., 1] | |
ix = ((ix + 1) / 2) * (IW-1); | |
iy = ((iy + 1) / 2) * (IH-1); | |
with torch.no_grad(): | |
ix_nw = torch.floor(ix); | |
iy_nw = torch.floor(iy); | |
ix_ne = ix_nw + 1; | |
iy_ne = iy_nw; | |
ix_sw = ix_nw; | |
iy_sw = iy_nw + 1; | |
ix_se = ix_nw + 1; | |
iy_se = iy_nw + 1; | |
nw = (ix_se - ix) * (iy_se - iy) | |
ne = (ix - ix_sw) * (iy_sw - iy) | |
sw = (ix_ne - ix) * (iy - iy_ne) | |
se = (ix - ix_nw) * (iy - iy_nw) | |
with torch.no_grad(): | |
torch.clamp(ix_nw, 0, IW-1, out=ix_nw) | |
torch.clamp(iy_nw, 0, IH-1, out=iy_nw) | |
torch.clamp(ix_ne, 0, IW-1, out=ix_ne) | |
torch.clamp(iy_ne, 0, IH-1, out=iy_ne) | |
torch.clamp(ix_sw, 0, IW-1, out=ix_sw) | |
torch.clamp(iy_sw, 0, IH-1, out=iy_sw) | |
torch.clamp(ix_se, 0, IW-1, out=ix_se) | |
torch.clamp(iy_se, 0, IH-1, out=iy_se) | |
image = image.view(N, C, IH * IW) | |
nw_val = torch.gather(image, 2, (iy_nw * IW + ix_nw).long().view(N, 1, H * W).repeat(1, C, 1)) | |
ne_val = torch.gather(image, 2, (iy_ne * IW + ix_ne).long().view(N, 1, H * W).repeat(1, C, 1)) | |
sw_val = torch.gather(image, 2, (iy_sw * IW + ix_sw).long().view(N, 1, H * W).repeat(1, C, 1)) | |
se_val = torch.gather(image, 2, (iy_se * IW + ix_se).long().view(N, 1, H * W).repeat(1, C, 1)) | |
out_val = (nw_val.view(N, C, H, W) * nw.view(N, 1, H, W) + | |
ne_val.view(N, C, H, W) * ne.view(N, 1, H, W) + | |
sw_val.view(N, C, H, W) * sw.view(N, 1, H, W) + | |
se_val.view(N, C, H, W) * se.view(N, 1, H, W)) | |
return out_val | |
def orthogonal(points, calibrations, transforms=None): | |
''' | |
Compute the orthogonal projections of 3D points into the image plane by given projection matrix | |
:param points: [B, 3, N] Tensor of 3D points | |
:param calibrations: [B, 3, 4] Tensor of projection matrix | |
:param transforms: [B, 2, 3] Tensor of image transform matrix | |
:return: xyz: [B, 3, N] Tensor of xyz coordinates in the image plane | |
''' | |
rot = calibrations[:, :3, :3] | |
trans = calibrations[:, :3, 3:4] | |
pts = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
if transforms is not None: | |
scale = transforms[:2, :2] | |
shift = transforms[:2, 2:3] | |
pts[:, :2, :] = torch.baddbmm(shift, scale, pts[:, :2, :]) | |
return pts | |
def perspective(points, calibrations, transforms=None): | |
''' | |
Compute the perspective projections of 3D points into the image plane by given projection matrix | |
:param points: [Bx3xN] Tensor of 3D points | |
:param calibrations: [Bx3x4] Tensor of projection matrix | |
:param transforms: [Bx2x3] Tensor of image transform matrix | |
:return: xy: [Bx2xN] Tensor of xy coordinates in the image plane | |
''' | |
rot = calibrations[:, :3, :3] | |
trans = calibrations[:, :3, 3:4] | |
homo = torch.baddbmm(trans, rot, points) # [B, 3, N] | |
xy = homo[:, :2, :] / homo[:, 2:3, :] | |
if transforms is not None: | |
scale = transforms[:2, :2] | |
shift = transforms[:2, 2:3] | |
xy = torch.baddbmm(shift, scale, xy) | |
xyz = torch.cat([xy, homo[:, 2:3, :]], 1) | |
return xyz | |