Spaces:
Running
on
L40S
Running
on
L40S
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
import math | |
from collections import OrderedDict | |
import os | |
from scipy.ndimage import morphology | |
import PIL.Image as pil_img | |
from skimage.io import imsave | |
import cv2 | |
import pickle | |
# ---------------------------- process/generate vertices, normals, faces | |
def generate_triangles(h, w, mask=None): | |
''' | |
quad layout: | |
0 1 ... w-1 | |
w w+1 | |
. | |
w*h | |
''' | |
triangles = [] | |
margin = 0 | |
for x in range(margin, w - 1 - margin): | |
for y in range(margin, h - 1 - margin): | |
triangle0 = [y * w + x, y * w + x + 1, (y + 1) * w + x] | |
triangle1 = [y * w + x + 1, (y + 1) * w + x + 1, (y + 1) * w + x] | |
triangles.append(triangle0) | |
triangles.append(triangle1) | |
triangles = np.array(triangles) | |
triangles = triangles[:, [0, 2, 1]] | |
return triangles | |
def face_vertices(vertices, faces): | |
""" | |
borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py | |
:param vertices: [batch size, number of vertices, 3] | |
:param faces: [batch size, number of faces, 3] | |
:return: [batch size, number of faces, 3, 3] | |
""" | |
assert (vertices.ndimension() == 3) | |
assert (faces.ndimension() == 3) | |
assert (vertices.shape[0] == faces.shape[0]) | |
assert (vertices.shape[2] == 3) | |
assert (faces.shape[2] == 3) | |
bs, nv = vertices.shape[:2] | |
bs, nf = faces.shape[:2] | |
device = vertices.device | |
faces = faces + \ | |
(torch.arange(bs, dtype=torch.int32).to(device) * nv)[:, None, None] | |
vertices = vertices.reshape((bs * nv, 3)) | |
# pytorch only supports long and byte tensors for indexing | |
return vertices[faces.long()] | |
def vertex_normals(vertices, faces): | |
""" | |
borrowed from https://github.com/daniilidis-group/neural_renderer/blob/master/neural_renderer/vertices_to_faces.py | |
:param vertices: [batch size, number of vertices, 3] | |
:param faces: [batch size, number of faces, 3] | |
:return: [batch size, number of vertices, 3] | |
""" | |
assert (vertices.ndimension() == 3) | |
assert (faces.ndimension() == 3) | |
assert (vertices.shape[0] == faces.shape[0]) | |
assert (vertices.shape[2] == 3) | |
assert (faces.shape[2] == 3) | |
bs, nv = vertices.shape[:2] | |
bs, nf = faces.shape[:2] | |
device = vertices.device | |
normals = torch.zeros(bs * nv, 3).to(device) | |
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) * | |
nv)[:, None, None] # expanded faces | |
vertices_faces = vertices.reshape((bs * nv, 3))[faces.long()] | |
faces = faces.reshape(-1, 3) | |
vertices_faces = vertices_faces.reshape(-1, 3, 3) | |
normals.index_add_( | |
0, faces[:, 1].long(), | |
torch.cross(vertices_faces[:, 2] - vertices_faces[:, 1], | |
vertices_faces[:, 0] - vertices_faces[:, 1])) | |
normals.index_add_( | |
0, faces[:, 2].long(), | |
torch.cross(vertices_faces[:, 0] - vertices_faces[:, 2], | |
vertices_faces[:, 1] - vertices_faces[:, 2])) | |
normals.index_add_( | |
0, faces[:, 0].long(), | |
torch.cross(vertices_faces[:, 1] - vertices_faces[:, 0], | |
vertices_faces[:, 2] - vertices_faces[:, 0])) | |
normals = F.normalize(normals, eps=1e-6, dim=1) | |
normals = normals.reshape((bs, nv, 3)) | |
# pytorch only supports long and byte tensors for indexing | |
return normals | |
def batch_orth_proj(X, camera): | |
''' | |
X is N x num_verts x 3 | |
''' | |
camera = camera.clone().view(-1, 1, 3) | |
X_trans = X[:, :, :2] + camera[:, :, 1:] | |
X_trans = torch.cat([X_trans, X[:, :, 2:]], 2) | |
Xn = (camera[:, :, 0:1] * X_trans) | |
return Xn | |
# borrowed from https://github.com/vchoutas/expose | |
DIM_FLIP = np.array([1, -1, -1], dtype=np.float32) | |
DIM_FLIP_TENSOR = torch.tensor([1, -1, -1], dtype=torch.float32) | |
def flip_pose(pose_vector, pose_format='rot-mat'): | |
if pose_format == 'aa': | |
if torch.is_tensor(pose_vector): | |
dim_flip = DIM_FLIP_TENSOR | |
else: | |
dim_flip = DIM_FLIP | |
return (pose_vector.reshape(-1, 3) * dim_flip).reshape(-1) | |
elif pose_format == 'rot-mat': | |
rot_mats = pose_vector.reshape(-1, 9).clone() | |
rot_mats[:, [1, 2, 3, 6]] *= -1 | |
return rot_mats.view_as(pose_vector) | |
else: | |
raise ValueError(f'Unknown rotation format: {pose_format}') | |
# -------------------------------------- image processing | |
# ref: https://torchgeometry.readthedocs.io/en/latest/_modules/kornia/filters | |
def gaussian(window_size, sigma): | |
def gauss_fcn(x): | |
return -(x - window_size // 2)**2 / float(2 * sigma**2) | |
gauss = torch.stack( | |
[torch.exp(torch.tensor(gauss_fcn(x))) for x in range(window_size)]) | |
return gauss / gauss.sum() | |
def get_gaussian_kernel(kernel_size: int, sigma: float): | |
r"""Function that returns Gaussian filter coefficients. | |
Args: | |
kernel_size (int): filter size. It should be odd and positive. | |
sigma (float): gaussian standard deviation. | |
Returns: | |
Tensor: 1D tensor with gaussian filter coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size})` | |
Examples:: | |
>>> kornia.image.get_gaussian_kernel(3, 2.5) | |
tensor([0.3243, 0.3513, 0.3243]) | |
>>> kornia.image.get_gaussian_kernel(5, 1.5) | |
tensor([0.1201, 0.2339, 0.2921, 0.2339, 0.1201]) | |
""" | |
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \ | |
kernel_size <= 0: | |
raise TypeError("kernel_size must be an odd positive integer. " | |
"Got {}".format(kernel_size)) | |
window_1d = gaussian(kernel_size, sigma) | |
return window_1d | |
def get_gaussian_kernel2d(kernel_size, sigma): | |
r"""Function that returns Gaussian filter matrix coefficients. | |
Args: | |
kernel_size (Tuple[int, int]): filter sizes in the x and y direction. | |
Sizes should be odd and positive. | |
sigma (Tuple[int, int]): gaussian standard deviation in the x and y | |
direction. | |
Returns: | |
Tensor: 2D tensor with gaussian filter matrix coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` | |
Examples:: | |
>>> kornia.image.get_gaussian_kernel2d((3, 3), (1.5, 1.5)) | |
tensor([[0.0947, 0.1183, 0.0947], | |
[0.1183, 0.1478, 0.1183], | |
[0.0947, 0.1183, 0.0947]]) | |
>>> kornia.image.get_gaussian_kernel2d((3, 5), (1.5, 1.5)) | |
tensor([[0.0370, 0.0720, 0.0899, 0.0720, 0.0370], | |
[0.0462, 0.0899, 0.1123, 0.0899, 0.0462], | |
[0.0370, 0.0720, 0.0899, 0.0720, 0.0370]]) | |
""" | |
if not isinstance(kernel_size, tuple) or len(kernel_size) != 2: | |
raise TypeError( | |
"kernel_size must be a tuple of length two. Got {}".format( | |
kernel_size)) | |
if not isinstance(sigma, tuple) or len(sigma) != 2: | |
raise TypeError( | |
"sigma must be a tuple of length two. Got {}".format(sigma)) | |
ksize_x, ksize_y = kernel_size | |
sigma_x, sigma_y = sigma | |
kernel_x = get_gaussian_kernel(ksize_x, sigma_x) | |
kernel_y = get_gaussian_kernel(ksize_y, sigma_y) | |
kernel_2d = torch.matmul(kernel_x.unsqueeze(-1), | |
kernel_y.unsqueeze(-1).t()) | |
return kernel_2d | |
def gaussian_blur(x, kernel_size=(5, 5), sigma=(1.3, 1.3)): | |
b, c, h, w = x.shape | |
kernel = get_gaussian_kernel2d(kernel_size, sigma).to(x.device).to(x.dtype) | |
kernel = kernel.repeat(c, 1, 1, 1) | |
padding = [(k - 1) // 2 for k in kernel_size] | |
return F.conv2d(x, kernel, padding=padding, stride=1, groups=c) | |
def _compute_binary_kernel(window_size): | |
r"""Creates a binary kernel to extract the patches. If the window size | |
is HxW will create a (H*W)xHxW kernel. | |
""" | |
window_range = window_size[0] * window_size[1] | |
kernel: torch.Tensor = torch.zeros(window_range, window_range) | |
for i in range(window_range): | |
kernel[i, i] += 1.0 | |
return kernel.view(window_range, 1, window_size[0], window_size[1]) | |
def median_blur(x, kernel_size=(3, 3)): | |
b, c, h, w = x.shape | |
kernel = _compute_binary_kernel(kernel_size).to(x.device).to(x.dtype) | |
kernel = kernel.repeat(c, 1, 1, 1) | |
padding = [(k - 1) // 2 for k in kernel_size] | |
features = F.conv2d(x, kernel, padding=padding, stride=1, groups=c) | |
features = features.view(b, c, -1, h, w) | |
median = torch.median(features, dim=2)[0] | |
return median | |
def get_laplacian_kernel2d(kernel_size: int): | |
r"""Function that returns Gaussian filter matrix coefficients. | |
Args: | |
kernel_size (int): filter size should be odd. | |
Returns: | |
Tensor: 2D tensor with laplacian filter matrix coefficients. | |
Shape: | |
- Output: :math:`(\text{kernel_size}_x, \text{kernel_size}_y)` | |
Examples:: | |
>>> kornia.image.get_laplacian_kernel2d(3) | |
tensor([[ 1., 1., 1.], | |
[ 1., -8., 1.], | |
[ 1., 1., 1.]]) | |
>>> kornia.image.get_laplacian_kernel2d(5) | |
tensor([[ 1., 1., 1., 1., 1.], | |
[ 1., 1., 1., 1., 1.], | |
[ 1., 1., -24., 1., 1.], | |
[ 1., 1., 1., 1., 1.], | |
[ 1., 1., 1., 1., 1.]]) | |
""" | |
if not isinstance(kernel_size, int) or kernel_size % 2 == 0 or \ | |
kernel_size <= 0: | |
raise TypeError("ksize must be an odd positive integer. Got {}".format( | |
kernel_size)) | |
kernel = torch.ones((kernel_size, kernel_size)) | |
mid = kernel_size // 2 | |
kernel[mid, mid] = 1 - kernel_size**2 | |
kernel_2d: torch.Tensor = kernel | |
return kernel_2d | |
def laplacian(x): | |
# https://torchgeometry.readthedocs.io/en/latest/_modules/kornia/filters/laplacian.html | |
b, c, h, w = x.shape | |
kernel_size = 3 | |
kernel = get_laplacian_kernel2d(kernel_size).to(x.device).to(x.dtype) | |
kernel = kernel.repeat(c, 1, 1, 1) | |
padding = (kernel_size - 1) // 2 | |
return F.conv2d(x, kernel, padding=padding, stride=1, groups=c) | |
# -------------------------------------- io | |
def copy_state_dict(cur_state_dict, pre_state_dict, prefix='', load_name=None): | |
def _get_params(key): | |
key = prefix + key | |
if key in pre_state_dict: | |
return pre_state_dict[key] | |
return None | |
for k in cur_state_dict.keys(): | |
if load_name is not None: | |
if load_name not in k: | |
continue | |
v = _get_params(k) | |
try: | |
if v is None: | |
# print('parameter {} not found'.format(k)) | |
continue | |
cur_state_dict[k].copy_(v) | |
except: | |
# print('copy param {} failed'.format(k)) | |
continue | |
def dict2obj(d): | |
# if isinstance(d, list): | |
# d = [dict2obj(x) for x in d] | |
if not isinstance(d, dict): | |
return d | |
class C(object): | |
pass | |
o = C() | |
for k in d: | |
o.__dict__[k] = dict2obj(d[k]) | |
return o | |
# original saved file with DataParallel | |
def remove_module(state_dict): | |
# create new OrderedDict that does not contain `module.` | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
return new_state_dict | |
def tensor2image(tensor): | |
image = tensor.detach().cpu().numpy() | |
image = image * 255. | |
image = np.maximum(np.minimum(image, 255), 0) | |
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]] | |
return image.astype(np.uint8).copy() | |
def dict_tensor2npy(tensor_dict): | |
npy_dict = {} | |
for key in tensor_dict: | |
npy_dict[key] = tensor_dict[key][0].cpu().numpy() | |
return npy_dict | |
def load_config(cfg_file): | |
import yaml | |
with open(cfg_file, 'r') as f: | |
cfg = yaml.load(f, Loader=yaml.FullLoader) | |
return cfg | |
def move_dict_to_device(dict, device, tensor2float=False): | |
for k, v in dict.items(): | |
if isinstance(v, torch.Tensor): | |
if tensor2float: | |
dict[k] = v.float().to(device) | |
else: | |
dict[k] = v.to(device) | |
def write_obj( | |
obj_name, | |
vertices, | |
faces, | |
colors=None, | |
texture=None, | |
uvcoords=None, | |
uvfaces=None, | |
inverse_face_order=False, | |
normal_map=None, | |
): | |
''' Save 3D face model with texture. | |
borrowed from https://github.com/YadiraF/PRNet/blob/master/utils/write.py | |
Args: | |
obj_name: str | |
vertices: shape = (nver, 3) | |
colors: shape = (nver, 3) | |
faces: shape = (ntri, 3) | |
texture: shape = (uv_size, uv_size, 3) | |
uvcoords: shape = (nver, 2) max value<=1 | |
''' | |
if obj_name.split('.')[-1] != 'obj': | |
obj_name = obj_name + '.obj' | |
mtl_name = obj_name.replace('.obj', '.mtl') | |
texture_name = obj_name.replace('.obj', '.png') | |
material_name = 'FaceTexture' | |
faces = faces.copy() | |
# mesh lab start with 1, python/c++ start from 0 | |
faces += 1 | |
if inverse_face_order: | |
faces = faces[:, [2, 1, 0]] | |
if uvfaces is not None: | |
uvfaces = uvfaces[:, [2, 1, 0]] | |
# write obj | |
with open(obj_name, 'w') as f: | |
if texture is not None: | |
f.write('mtllib %s\n\n' % os.path.basename(mtl_name)) | |
# write vertices | |
if colors is None: | |
for i in range(vertices.shape[0]): | |
f.write('v {} {} {}\n'.format(vertices[i, 0], vertices[i, 1], | |
vertices[i, 2])) | |
else: | |
for i in range(vertices.shape[0]): | |
f.write('v {} {} {} {} {} {}\n'.format(vertices[i, 0], | |
vertices[i, 1], | |
vertices[i, | |
2], colors[i, | |
0], | |
colors[i, | |
1], colors[i, | |
2])) | |
# write uv coords | |
if texture is None: | |
for i in range(faces.shape[0]): | |
f.write('f {} {} {}\n'.format(faces[i, 0], faces[i, 1], | |
faces[i, 2])) | |
else: | |
for i in range(uvcoords.shape[0]): | |
f.write('vt {} {}\n'.format(uvcoords[i, 0], uvcoords[i, 1])) | |
f.write('usemtl %s\n' % material_name) | |
# write f: ver ind/ uv ind | |
uvfaces = uvfaces + 1 | |
for i in range(faces.shape[0]): | |
f.write('f {}/{} {}/{} {}/{}\n'.format(faces[i, 0], uvfaces[i, | |
0], | |
faces[i, 1], uvfaces[i, | |
1], | |
faces[i, | |
2], uvfaces[i, | |
2])) | |
# write mtl | |
with open(mtl_name, 'w') as f: | |
f.write('newmtl %s\n' % material_name) | |
s = 'map_Kd {}\n'.format( | |
os.path.basename(texture_name)) # map to image | |
f.write(s) | |
if normal_map is not None: | |
if torch.is_tensor(normal_map): | |
normal_map = normal_map.detach().cpu().numpy().squeeze( | |
) | |
normal_map = np.transpose(normal_map, (1, 2, 0)) | |
name, _ = os.path.splitext(obj_name) | |
normal_name = f'{name}_normals.png' | |
f.write(f'disp {normal_name}') | |
out_normal_map = normal_map / (np.linalg.norm( | |
normal_map, axis=-1, keepdims=True) + 1e-9) | |
out_normal_map = (out_normal_map + 1) * 0.5 | |
cv2.imwrite(normal_name, (out_normal_map * 255).astype( | |
np.uint8)[:, :, ::-1]) | |
cv2.imwrite(texture_name, texture) | |
def save_pkl(savepath, params, ind=0): | |
out_data = {} | |
for k, v in params.items(): | |
if torch.is_tensor(v): | |
out_data[k] = v[ind].detach().cpu().numpy() | |
else: | |
out_data[k] = v | |
# import ipdb; ipdb.set_trace() | |
with open(savepath, 'wb') as f: | |
pickle.dump(out_data, f, protocol=2) | |
# load obj, similar to load_obj from pytorch3d | |
def load_obj(obj_filename): | |
""" Ref: https://github.com/facebookresearch/pytorch3d/blob/25c065e9dafa90163e7cec873dbb324a637c68b7/pytorch3d/io/obj_io.py | |
Load a mesh from a file-like object. | |
""" | |
with open(obj_filename, 'r') as f: | |
lines = [line.strip() for line in f] | |
verts, uvcoords = [], [] | |
faces, uv_faces = [], [] | |
# startswith expects each line to be a string. If the file is read in as | |
# bytes then first decode to strings. | |
if lines and isinstance(lines[0], bytes): | |
lines = [el.decode("utf-8") for el in lines] | |
for line in lines: | |
tokens = line.strip().split() | |
if line.startswith("v "): # Line is a vertex. | |
vert = [float(x) for x in tokens[1:4]] | |
if len(vert) != 3: | |
msg = "Vertex %s does not have 3 values. Line: %s" | |
raise ValueError(msg % (str(vert), str(line))) | |
verts.append(vert) | |
elif line.startswith("vt "): # Line is a texture. | |
tx = [float(x) for x in tokens[1:3]] | |
if len(tx) != 2: | |
raise ValueError( | |
"Texture %s does not have 2 values. Line: %s" % | |
(str(tx), str(line))) | |
uvcoords.append(tx) | |
elif line.startswith("f "): # Line is a face. | |
# Update face properties info. | |
face = tokens[1:] | |
face_list = [f.split("/") for f in face] | |
for vert_props in face_list: | |
# Vertex index. | |
faces.append(int(vert_props[0])) | |
if len(vert_props) > 1: | |
if vert_props[1] != "": | |
# Texture index is present e.g. f 4/1/1. | |
uv_faces.append(int(vert_props[1])) | |
verts = torch.tensor(verts, dtype=torch.float32) | |
uvcoords = torch.tensor(uvcoords, dtype=torch.float32) | |
faces = torch.tensor(faces, dtype=torch.long) | |
faces = faces.reshape(-1, 3) - 1 | |
uv_faces = torch.tensor(uv_faces, dtype=torch.long) | |
uv_faces = uv_faces.reshape(-1, 3) - 1 | |
return (verts, uvcoords, faces, uv_faces) | |
# ---------------------------------- visualization | |
def draw_rectangle(img, | |
bbox, | |
bbox_color=(255, 255, 255), | |
thickness=3, | |
is_opaque=False, | |
alpha=0.5): | |
"""Draws the rectangle around the object | |
borrowed from: https://bbox-visualizer.readthedocs.io/en/latest/_modules/bbox_visualizer/bbox_visualizer.html | |
Parameters | |
---------- | |
img : ndarray | |
the actual image | |
bbox : list | |
a list containing x_min, y_min, x_max and y_max of the rectangle positions | |
bbox_color : tuple, optional | |
the color of the box, by default (255,255,255) | |
thickness : int, optional | |
thickness of the outline of the box, by default 3 | |
is_opaque : bool, optional | |
if False, draws a solid rectangular outline. Else, a filled rectangle which is semi transparent, by default False | |
alpha : float, optional | |
strength of the opacity, by default 0.5 | |
Returns | |
------- | |
ndarray | |
the image with the bounding box drawn | |
""" | |
output = img.copy() | |
if not is_opaque: | |
cv2.rectangle(output, (bbox[0], bbox[1]), (bbox[2], bbox[3]), | |
bbox_color, thickness) | |
else: | |
overlay = img.copy() | |
cv2.rectangle(overlay, (bbox[0], bbox[1]), (bbox[2], bbox[3]), | |
bbox_color, -1) | |
# cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output) | |
return output | |
def plot_bbox(image, bbox): | |
''' Draw bbox | |
Args: | |
image: the input image | |
bbox: [left, top, right, bottom] | |
''' | |
image = cv2.rectangle(image.copy(), (bbox[1], bbox[0]), (bbox[3], bbox[2]), | |
[0, 255, 0], | |
thickness=3) | |
# image = draw_rectangle(image, bbox, bbox_color=[0,255,0]) | |
return image | |
end_list = np.array([17, 22, 27, 42, 48, 31, 36, 68], dtype=np.int32) - 1 | |
def plot_kpts(image, kpts, color='r'): | |
''' Draw 68 key points | |
Args: | |
image: the input image | |
kpt: (68, 3). | |
''' | |
kpts = kpts.copy().astype(np.int32) | |
if color == 'r': | |
c = (255, 0, 0) | |
elif color == 'g': | |
c = (0, 255, 0) | |
elif color == 'b': | |
c = (255, 0, 0) | |
image = image.copy() | |
kpts = kpts.copy() | |
for i in range(kpts.shape[0]): | |
st = kpts[i, :2] | |
if kpts.shape[1] == 4: | |
if kpts[i, 3] > 0.5: | |
c = (0, 255, 0) | |
else: | |
c = (0, 0, 255) | |
image = cv2.circle(image, (st[0], st[1]), 1, c, 2) | |
if i in end_list: | |
continue | |
ed = kpts[i + 1, :2] | |
image = cv2.line(image, (st[0], st[1]), (ed[0], ed[1]), | |
(255, 255, 255), 1) | |
return image | |
def plot_verts(image, kpts, color='r'): | |
''' Draw 68 key points | |
Args: | |
image: the input image | |
kpt: (68, 3). | |
''' | |
kpts = kpts.copy().astype(np.int32) | |
if color == 'r': | |
c = (255, 0, 0) | |
elif color == 'g': | |
c = (0, 255, 0) | |
elif color == 'b': | |
c = (0, 0, 255) | |
elif color == 'y': | |
c = (0, 255, 255) | |
image = image.copy() | |
for i in range(kpts.shape[0]): | |
st = kpts[i, :2] | |
image = cv2.circle(image, (st[0], st[1]), 1, c, 5) | |
return image | |
def tensor_vis_landmarks(images, | |
landmarks, | |
gt_landmarks=None, | |
color='g', | |
isScale=True): | |
# visualize landmarks | |
vis_landmarks = [] | |
images = images.cpu().numpy() | |
predicted_landmarks = landmarks.detach().cpu().numpy() | |
if gt_landmarks is not None: | |
gt_landmarks_np = gt_landmarks.detach().cpu().numpy() | |
for i in range(images.shape[0]): | |
image = images[i] | |
image = image.transpose(1, 2, 0)[:, :, [2, 1, 0]].copy() | |
image = (image * 255) | |
if isScale: | |
predicted_landmark = predicted_landmarks[i] * \ | |
image.shape[0]/2 + image.shape[0]/2 | |
else: | |
predicted_landmark = predicted_landmarks[i] | |
if predicted_landmark.shape[0] == 68: | |
image_landmarks = plot_kpts(image, predicted_landmark, color) | |
if gt_landmarks is not None: | |
image_landmarks = plot_verts( | |
image_landmarks, gt_landmarks_np[i] * image.shape[0] / 2 + | |
image.shape[0] / 2, 'r') | |
else: | |
image_landmarks = plot_verts(image, predicted_landmark, color) | |
if gt_landmarks is not None: | |
image_landmarks = plot_verts( | |
image_landmarks, gt_landmarks_np[i] * image.shape[0] / 2 + | |
image.shape[0] / 2, 'r') | |
vis_landmarks.append(image_landmarks) | |
vis_landmarks = np.stack(vis_landmarks) | |
vis_landmarks = torch.from_numpy( | |
vis_landmarks[:, :, :, [2, 1, 0]].transpose( | |
0, 3, 1, 2)) / 255. # , dtype=torch.float32) | |
return vis_landmarks | |