Spaces:
Running
on
L40S
Running
on
L40S
''' | |
crop | |
for torch tensor | |
Given image, bbox(center, bboxsize) | |
return: cropped image, tform(used for transform the keypoint accordingly) | |
only support crop to squared images | |
''' | |
import torch | |
from kornia.geometry.transform.imgwarp import (warp_perspective, | |
get_perspective_transform, | |
warp_affine) | |
def points2bbox(points, points_scale=None): | |
if points_scale: | |
assert points_scale[0] == points_scale[1] | |
points = points.clone() | |
points[:, :, :2] = (points[:, :, :2] * 0.5 + 0.5) * points_scale[0] | |
min_coords, _ = torch.min(points, dim=1) | |
xmin, ymin = min_coords[:, 0], min_coords[:, 1] | |
max_coords, _ = torch.max(points, dim=1) | |
xmax, ymax = max_coords[:, 0], max_coords[:, 1] | |
center = torch.stack([xmax + xmin, ymax + ymin], dim=-1) * 0.5 | |
width = (xmax - xmin) | |
height = (ymax - ymin) | |
# Convert the bounding box to a square box | |
size = torch.max(width, height).unsqueeze(-1) | |
return center, size | |
def augment_bbox(center, bbox_size, scale=[1.0, 1.0], trans_scale=0.): | |
batch_size = center.shape[0] | |
trans_scale = (torch.rand([batch_size, 2], device=center.device) * 2. - | |
1.) * trans_scale | |
center = center + trans_scale * bbox_size # 0.5 | |
scale = torch.rand([batch_size, 1], device=center.device) * \ | |
(scale[1] - scale[0]) + scale[0] | |
size = bbox_size * scale | |
return center, size | |
def crop_tensor(image, | |
center, | |
bbox_size, | |
crop_size, | |
interpolation='bilinear', | |
align_corners=False): | |
''' for batch image | |
Args: | |
image (torch.Tensor): the reference tensor of shape BXHxWXC. | |
center: [bz, 2] | |
bboxsize: [bz, 1] | |
crop_size; | |
interpolation (str): Interpolation flag. Default: 'bilinear'. | |
align_corners (bool): mode for grid_generation. Default: False. See | |
https://pytorch.org/docs/stable/nn.functional.html#torch.nn.functional.interpolate for details | |
Returns: | |
cropped_image | |
tform | |
''' | |
dtype = image.dtype | |
device = image.device | |
batch_size = image.shape[0] | |
# points: top-left, top-right, bottom-right, bottom-left | |
src_pts = torch.zeros([4, 2], dtype=dtype, | |
device=device).unsqueeze(0).expand( | |
batch_size, -1, -1).contiguous() | |
src_pts[:, 0, :] = center - bbox_size * 0.5 # / (self.crop_size - 1) | |
src_pts[:, 1, 0] = center[:, 0] + bbox_size[:, 0] * 0.5 | |
src_pts[:, 1, 1] = center[:, 1] - bbox_size[:, 0] * 0.5 | |
src_pts[:, 2, :] = center + bbox_size * 0.5 | |
src_pts[:, 3, 0] = center[:, 0] - bbox_size[:, 0] * 0.5 | |
src_pts[:, 3, 1] = center[:, 1] + bbox_size[:, 0] * 0.5 | |
DST_PTS = torch.tensor([[ | |
[0, 0], | |
[crop_size - 1, 0], | |
[crop_size - 1, crop_size - 1], | |
[0, crop_size - 1], | |
]], | |
dtype=dtype, | |
device=device).expand(batch_size, -1, -1) | |
# estimate transformation between points | |
dst_trans_src = get_perspective_transform(src_pts, DST_PTS) | |
# simulate broadcasting | |
# dst_trans_src = dst_trans_src.expand(batch_size, -1, -1) | |
# warp images | |
cropped_image = warp_affine(image, | |
dst_trans_src[:, :2, :], | |
(crop_size, crop_size), | |
mode=interpolation, | |
align_corners=align_corners) | |
tform = torch.transpose(dst_trans_src, 2, 1) | |
# tform = torch.inverse(dst_trans_src) | |
return cropped_image, tform | |
class Cropper(object): | |
def __init__(self, crop_size, scale=[1, 1], trans_scale=0.): | |
self.crop_size = crop_size | |
self.scale = scale | |
self.trans_scale = trans_scale | |
def crop(self, image, points, points_scale=None): | |
# points to bbox | |
center, bbox_size = points2bbox(points.clone(), points_scale) | |
# argument bbox. TODO: add rotation? | |
center, bbox_size = augment_bbox(center, | |
bbox_size, | |
scale=self.scale, | |
trans_scale=self.trans_scale) | |
# crop | |
cropped_image, tform = crop_tensor(image, center, bbox_size, | |
self.crop_size) | |
return cropped_image, tform | |
def transform_points(self, | |
points, | |
tform, | |
points_scale=None, | |
normalize=True): | |
points_2d = points[:, :, :2] | |
#'input points must use original range' | |
if points_scale: | |
assert points_scale[0] == points_scale[1] | |
points_2d = (points_2d * 0.5 + 0.5) * points_scale[0] | |
batch_size, n_points, _ = points.shape | |
trans_points_2d = torch.bmm( | |
torch.cat([ | |
points_2d, | |
torch.ones([batch_size, n_points, 1], | |
device=points.device, | |
dtype=points.dtype) | |
], | |
dim=-1), tform) | |
trans_points = torch.cat([trans_points_2d[:, :, :2], points[:, :, 2:]], | |
dim=-1) | |
if normalize: | |
trans_points[:, :, :2] = trans_points[:, :, :2] / \ | |
self.crop_size*2 - 1 | |
return trans_points | |
def transform_points(points, tform, points_scale=None): | |
points_2d = points[:, :, :2] | |
#'input points must use original range' | |
if points_scale: | |
assert points_scale[0] == points_scale[1] | |
points_2d = (points_2d * 0.5 + 0.5) * points_scale[0] | |
# import ipdb; ipdb.set_trace() | |
batch_size, n_points, _ = points.shape | |
trans_points_2d = torch.bmm( | |
torch.cat([ | |
points_2d, | |
torch.ones([batch_size, n_points, 1], | |
device=points.device, | |
dtype=points.dtype) | |
], | |
dim=-1), tform) | |
trans_points = torch.cat([trans_points_2d[:, :, :2], points[:, :, 2:]], | |
dim=-1) | |
return trans_points | |