File size: 9,427 Bytes
be6d4fe bbe8153 d4a56f6 bbe8153 e2f851a bbe8153 cf309f8 4fceacd b6488dd bbe8153 212f3d8 3ec7744 8727e48 8084825 53c7f91 8084825 53c7f91 8084825 53c7f91 8f08c01 53c7f91 8084825 53c7f91 8084825 3ec7744 2d673d7 0603124 2d673d7 f14422e 3ec7744 41e00e5 3ec7744 cf1d320 3ec7744 f185bce 6640713 4a10134 fcb0ea5 7e3803b bbe8153 cf309f8 f185bce 81b9dd6 f185bce 7e3803b bbe8153 81b9dd6 bbe8153 81b9dd6 bbe8153 81b9dd6 bbe8153 cf309f8 bbe8153 7e3803b bbe8153 7e3803b bbe8153 81b9dd6 7e3803b bbe8153 7e3803b bbe8153 7e3803b bbe8153 4fceacd bbe8153 4fceacd bbe8153 4fceacd 8ca72f6 136adc4 f14422e 56704ce b6488dd 3ec7744 b6488dd f14422e b6488dd f14422e b6488dd f14422e b6488dd bbe8153 e642140 23b843d b6488dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import gradio as gr
"""
=====================================================
Optical Flow: Predicting movement with the RAFT model
=====================================================
Optical flow is the task of predicting movement between two images, usually two
consecutive frames of a video. Optical flow models take two images as input, and
predict a flow: the flow indicates the displacement of every single pixel in the
first image, and maps it to its corresponding pixel in the second image. Flows
are (2, H, W)-dimensional tensors, where the first axis corresponds to the
predicted horizontal and vertical displacements.
The following example illustrates how torchvision can be used to predict flows
using our implementation of the RAFT model. We will also see how to convert the
predicted flows to RGB images for visualization.
"""
import cv2
import numpy as np
import os
import sys
import torch
import matplotlib.pyplot as plt
import torchvision.transforms.functional as F
from torchvision.io import read_video
from torchvision.models.optical_flow import Raft_Large_Weights
from torchvision.models.optical_flow import raft_large
from torchvision.io import write_jpeg
import torchvision.transforms as T
import tempfile
from pathlib import Path
from urllib.request import urlretrieve
import tensorflow as tf
from scipy.interpolate import interp2d
from imageio import imread, imwrite
from flowio import readFlowFile
def write_flo(flow, filename):
"""
Write optical flow in Middlebury .flo format
:param flow: optical flow map
:param filename: optical flow file path to be saved
:return: None
from https://github.com/liruoteng/OpticalFlowToolkit/
"""
# forcing conversion to float32 precision
flow = flow.cpu().data.numpy()
flow = flow.astype(np.float32)
f = open(filename, 'wb')
magic = np.array([202021.25], dtype=np.float32)
(height, width) = flow.shape[0:2]
w = np.array([width], dtype=np.int32)
h = np.array([height], dtype=np.int32)
magic.tofile(f)
w.tofile(f)
h.tofile(f)
flow.tofile(f)
f.close()
def warpImage(im, vx, vy, cast_uint8=True):
'''
function to warp images with different dimensions
'''
height2, width2, nChannels = im.shape
height1, width1 = vx.shape
x = np.linspace(1, width2, width2)
y = np.linspace(1, height2, height2)
X = np.linspace(1, width1, width1)
Y = np.linspace(1, height1, height1)
xx, yy = np.meshgrid(x, y)
XX, YY = np.meshgrid(X, Y)
#XX = XX + vx
XX = np.concatenate([XX, vx], axis = 1)
#YY = YY + vy
YY = np.concatenate([YY, vy], axis = 1)
mask = (XX < 1) | (XX > width2) | (YY < 1) | (YY > height2)
XX = np.clip(XX, 1, width2)
YY = np.clip(XX, 1, height2)
warpI2 = np.zeros((height1, width1, nChannels))
for i in range(nChannels):
f = interp2d(x, y, im[:, :, i], 'cubic')
foo = f(X, Y)
foo[mask] = 0.6
warpI2[:, :, i] = foo
mask = 1 - mask
if cast_uint8:
warpI2 = warpI2.astype(np.uint8)
return warpI2, mask
def get_warp_res(fname_image, fname_flow, fname_output='warped.png'):
print(f"FNAME IMAGE: {fname_image}")
im2 = imread(fname_image)
print(f"FNAME IMAGE READED: {im2}")
flow = fname_flow.cpu().detach().numpy()
im_warped, _ = warpImage(im2, flow[:, :, 0], flow[:, :, 1])
imwrite(fname_output, im_warped)
def infer():
video_url = "https://download.pytorch.org/tutorial/pexelscom_pavel_danilyuk_basketball_hd.mp4"
video_path = Path(tempfile.mkdtemp()) / "basketball.mp4"
_ = urlretrieve(video_url, video_path)
frames, _, _ = read_video(str(video_path), output_format="TCHW")
print(f"FRAME BEFORE: {frames[100]}")
img1_batch = torch.stack([frames[100]])
img2_batch = torch.stack([frames[101]])
print(f"FRAME AFTER: {img1_batch}")
weights = Raft_Large_Weights.DEFAULT
transforms = weights.transforms()
def preprocess(img1_batch, img2_batch):
img1_batch = F.resize(img1_batch, size=[520, 960])
img2_batch = F.resize(img2_batch, size=[520, 960])
return transforms(img1_batch, img2_batch)
img1_batch, img2_batch = preprocess(img1_batch, img2_batch)
print(f"shape = {img1_batch.shape}, dtype = {img1_batch.dtype}")
####################################
# Estimating Optical flow using RAFT
# ----------------------------------
# We will use our RAFT implementation from
# :func:`~torchvision.models.optical_flow.raft_large`, which follows the same
# architecture as the one described in the `original paper <https://arxiv.org/abs/2003.12039>`_.
# We also provide the :func:`~torchvision.models.optical_flow.raft_small` model
# builder, which is smaller and faster to run, sacrificing a bit of accuracy.
# If you can, run this example on a GPU, it will be a lot faster.
device = "cuda" if torch.cuda.is_available() else "cpu"
model = raft_large(weights=Raft_Large_Weights.DEFAULT, progress=False).to(device)
model = model.eval()
list_of_flows = model(img1_batch.to(device), img2_batch.to(device))
print(f"type = {type(list_of_flows)}")
print(f"length = {len(list_of_flows)} = number of iterations of the model")
####################################
# The RAFT model outputs lists of predicted flows where each entry is a
# (N, 2, H, W) batch of predicted flows that corresponds to a given "iteration"
# in the model. For more details on the iterative nature of the model, please
# refer to the `original paper <https://arxiv.org/abs/2003.12039>`_. Here, we
# are only interested in the final predicted flows (they are the most acccurate
# ones), so we will just retrieve the last item in the list.
#
# As described above, a flow is a tensor with dimensions (2, H, W) (or (N, 2, H,
# W) for batches of flows) where each entry corresponds to the horizontal and
# vertical displacement of each pixel from the first image to the second image.
# Note that the predicted flows are in "pixel" unit, they are not normalized
# w.r.t. the dimensions of the images.
predicted_flows = list_of_flows[-1]
print(f"dtype = {predicted_flows.dtype}")
print(f"shape = {predicted_flows.shape} = (N, 2, H, W)")
print(f"min = {predicted_flows.min()}, max = {predicted_flows.max()}")
####################################
# Visualizing predicted flows
# ---------------------------
# Torchvision provides the :func:`~torchvision.utils.flow_to_image` utlity to
# convert a flow into an RGB image. It also supports batches of flows.
# each "direction" in the flow will be mapped to a given RGB color. In the
# images below, pixels with similar colors are assumed by the model to be moving
# in similar directions. The model is properly able to predict the movement of
# the ball and the player. Note in particular the different predicted direction
# of the ball in the first image (going to the left) and in the second image
# (going up).
from torchvision.utils import flow_to_image
#flow_imgs = flow_to_image(predicted_flows)
#print(flow_imgs)
predicted_flow = list_of_flows[-1][0]
flow_img = flow_to_image(predicted_flow).to("cpu")
# output_folder = "/tmp/" # Update this to the folder of your choice
write_jpeg(flow_img, f"predicted_flow.jpg")
input_image = flow_to_image(frames[100]).to("cpu")
write_jpeg(input_image, f"frame_input.jpg")
flo_file = write_flo(predicted_flow, "flofile.flo")
#write_jpeg(frames[100], f"input_image.jpg")
#res = warp_image(img1_batch, predicted_flow)
# define a transform to convert a tensor to PIL image
#transform = T.ToPILImage()
# convert the tensor to PIL image using above transform
#img = transform(frames[100])
# display the PIL image
#img.show()
#img.save('frame_input.jpg')
#res = get_warp_res("frame_input.jpg", predicted_flow, fname_output='warped.png')
#print(res)
return "done", "predicted_flow.jpg", ["flofile.flo"], 'frame_input.jpg'
####################################
# Bonus: Creating GIFs of predicted flows
# ---------------------------------------
# In the example above we have only shown the predicted flows of 2 pairs of
# frames. A fun way to apply the Optical Flow models is to run the model on an
# entire video, and create a new video from all the predicted flows. Below is a
# snippet that can get you started with this. We comment out the code, because
# this example is being rendered on a machine without a GPU, and it would take
# too long to run it.
# from torchvision.io import write_jpeg
# for i, (img1, img2) in enumerate(zip(frames, frames[1:])):
# # Note: it would be faster to predict batches of flows instead of individual flows
# img1, img2 = preprocess(img1, img2)
# list_of_flows = model(img1.to(device), img2.to(device))
# predicted_flow = list_of_flows[-1][0]
# flow_img = flow_to_image(predicted_flow).to("cpu")
# output_folder = "/tmp/" # Update this to the folder of your choice
# write_jpeg(flow_img, output_folder + f"predicted_flow_{i}.jpg")
####################################
# Once the .jpg flow images are saved, you can convert them into a video or a
# GIF using ffmpeg with e.g.:
#
# ffmpeg -f image2 -framerate 30 -i predicted_flow_%d.jpg -loop -1 flow.gif
gr.Interface(fn=infer, inputs=[], outputs=[gr.Textbox(), gr.Image(), gr.Files(), gr.Image()]).launch() |