Update app.py
Browse files
app.py
CHANGED
@@ -137,8 +137,8 @@ def infer():
|
|
137 |
model = model.eval()
|
138 |
|
139 |
list_of_flows = model(img1_batch.to(device), img2_batch.to(device))
|
140 |
-
print(f"type = {type(list_of_flows)}")
|
141 |
-
print(f"length = {len(list_of_flows)} = number of iterations of the model")
|
142 |
|
143 |
####################################
|
144 |
# The RAFT model outputs lists of predicted flows where each entry is a
|
@@ -154,9 +154,9 @@ def infer():
|
|
154 |
# Note that the predicted flows are in "pixel" unit, they are not normalized
|
155 |
# w.r.t. the dimensions of the images.
|
156 |
predicted_flows = list_of_flows[-1]
|
157 |
-
print(f"dtype = {predicted_flows.dtype}")
|
158 |
-
print(f"shape = {predicted_flows.shape} = (N, 2, H, W)")
|
159 |
-
print(f"min = {predicted_flows.min()}, max = {predicted_flows.max()}")
|
160 |
|
161 |
|
162 |
####################################
|
|
|
137 |
model = model.eval()
|
138 |
|
139 |
list_of_flows = model(img1_batch.to(device), img2_batch.to(device))
|
140 |
+
print(f"list_of_flows type = {type(list_of_flows)}")
|
141 |
+
print(f"list_of_flows length = {len(list_of_flows)} = number of iterations of the model")
|
142 |
|
143 |
####################################
|
144 |
# The RAFT model outputs lists of predicted flows where each entry is a
|
|
|
154 |
# Note that the predicted flows are in "pixel" unit, they are not normalized
|
155 |
# w.r.t. the dimensions of the images.
|
156 |
predicted_flows = list_of_flows[-1]
|
157 |
+
print(f"predicted_flows dtype = {predicted_flows.dtype}")
|
158 |
+
print(f"predicted_flows shape = {predicted_flows.shape} = (N, 2, H, W)")
|
159 |
+
print(f"predicted_flows min = {predicted_flows.min()}, predicted_flows max = {predicted_flows.max()}")
|
160 |
|
161 |
|
162 |
####################################
|