File size: 4,278 Bytes
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
b66671b
dd8f929
ca25718
 
 
dd8f929
b66671b
 
 
dd8f929
ca25718
 
 
 
 
 
dd8f929
b66671b
dd8f929
ca25718
 
 
dd8f929
b66671b
 
 
dd8f929
ca25718
 
 
 
 
 
dd8f929
 
 
 
 
 
ca25718
 
 
 
 
 
dd8f929
 
 
ca25718
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd8f929
 
 
 
 
 
 
 
 
 
 
 
 
 
ca25718
 
dd8f929
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import argparse


def parse_args():
    parser = argparse.ArgumentParser(description="Process Reward Optimization.")

    # update paths here!
    parser.add_argument(
        "--cache_dir",
        type=str,
        help="HF cache directory",
        default="/shared-local/aoq951/HF_CACHE/",
    )
    parser.add_argument(
        "--save_dir",
        type=str,
        help="Directory to save images",
        default="/shared-local/aoq951/ReNO/outputs",
    )

    # model and optim
    parser.add_argument("--model", type=str, help="Model to use", default="sdxl-turbo")
    parser.add_argument("--lr", type=float, help="Learning rate", default=5.0)
    parser.add_argument("--n_iters", type=int, help="Number of iterations", default=50)
    parser.add_argument(
        "--n_inference_steps", type=int, help="Number of iterations", default=1
    )
    parser.add_argument(
        "--optim",
        choices=["sgd", "adam", "lbfgs"],
        default="sgd",
        help="Optimizer to be used",
    )
    parser.add_argument("--nesterov", default=True, action="store_false")
    parser.add_argument(
        "--grad_clip", type=float, help="Gradient clipping", default=0.1
    )
    parser.add_argument("--seed", type=int, help="Seed to use", default=0)

    # reward losses
    parser.add_argument(
        "--enable_hps", default=False, action="store_true",
    )
    parser.add_argument(
        "--hps_weighting", type=float, help="Weighting for HPS", default=5.0
    )
    parser.add_argument(
        "--enable_imagereward",
        default=False,
        action="store_true",
    )
    parser.add_argument(
        "--imagereward_weighting",
        type=float,
        help="Weighting for ImageReward",
        default=1.0,
    )
    parser.add_argument(
        "--enable_clip", default=False, action="store_true"
    )
    parser.add_argument(
        "--clip_weighting", type=float, help="Weighting for CLIP", default=0.01
    )
    parser.add_argument(
        "--enable_pickscore",
        default=False,
        action="store_true",
    )
    parser.add_argument(
        "--pickscore_weighting",
        type=float,
        help="Weighting for PickScore",
        default=0.05,
    )
    parser.add_argument(
        "--disable_aesthetic",
        default=False,
        action="store_false",
        dest="enable_aesthetic",
    )
    parser.add_argument(
        "--aesthetic_weighting",
        type=float,
        help="Weighting for Aesthetic",
        default=0.0,
    )
    parser.add_argument(
        "--disable_reg", default=True, action="store_false", dest="enable_reg"
    )
    parser.add_argument(
        "--reg_weight", type=float, help="Regularization weight", default=0.01
    )

    # task specific
    parser.add_argument(
        "--task",
        type=str,
        help="Task to run",
        default="single",
        choices=[
            "t2i-compbench",
            "single",
            "parti-prompts",
            "geneval",
            "example-prompts",
        ],
    )
    parser.add_argument(
        "--prompt",
        type=str,
        help="Prompt to run",
        default="A red dog and a green cat",
    )
    parser.add_argument(
        "--benchmark_reward",
        help="Reward to benchmark on",
        default="total",
        choices=["ImageReward", "PickScore", "HPS", "CLIP", "total"],
    )

    # general
    parser.add_argument("--save_all_images", default=False, action="store_true")
    parser.add_argument("--no_optim", default=False, action="store_true")
    parser.add_argument("--imageselect", default=False, action="store_true")
    parser.add_argument("--memsave", default=False, action="store_true")
    parser.add_argument("--dtype", type=str, help="Data type to use", default="float16")
    parser.add_argument("--device_id", type=str, help="Device ID to use", default=None)
    parser.add_argument(
        "--cpu_offloading",
        help="Enable CPU offloading",
        default=False,
        action="store_true",
    )

    # optional multi-step model
    parser.add_argument("--enable_multi_apply", default=False, action="store_true")
    parser.add_argument(
        "--multi_step_model", type=str, help="Model to use", default="flux"
    )

    args = parser.parse_args()
    return args