Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,720 Bytes
1cb6bad ee7720a 460c68a 1cb6bad ee7720a 1cb6bad ee7720a 1cb6bad 0473e4c ee7720a b879745 1cb6bad b879745 1cb6bad b879745 276f269 b879745 ee7720a b879745 ee7720a b879745 ee7720a b879745 ee7720a b879745 ee7720a b879745 ee7720a ceb312c b879745 ee7720a ceb312c b879745 ee7720a b879745 ee7720a b879745 1cb6bad ee7720a 1cb6bad 2ea2166 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 |
import gradio as gr
from diffusers import StableDiffusionXLPipeline, DDIMScheduler
import torch
import sa_handler
import math
from diffusers.utils import load_image
import inversion
import numpy as np
# init models
scheduler = DDIMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
clip_sample=False, set_alpha_to_one=False)
pipeline = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16",
use_safetensors=True,
scheduler=scheduler
).to("cuda")
pipeline.enable_model_cpu_offload()
pipeline.enable_vae_slicing()
# DDIM inversion
def run(ref_path, ref_style, ref_prompt, prompt1, prompt2, prompt3):
src_style = f"{ref_style}"
src_prompt = f"{ref_prompt}, {src_style}."
image_path = f"{ref_path}"
num_inference_steps = 50
x0 = np.array(load_image(image_path).resize((1024, 1024)))
zts = inversion.ddim_inversion(pipeline, x0, src_prompt, num_inference_steps, 2)
#mediapy.show_image(x0, title="innput reference image", height=256)
# run StyleAligned
prompts = [
src_prompt,
prompt1,
prompt2,
prompt3
]
# some parameters you can adjust to control fidelity to reference
shared_score_shift = np.log(2) # higher value induces higher fidelity, set 0 for no shift
shared_score_scale = 1.0 # higher value induces higher, set 1 for no rescale
# for very famouse images consider supressing attention to refference, here is a configuration example:
# shared_score_shift = np.log(1)
# shared_score_scale = 0.5
for i in range(1, len(prompts)):
prompts[i] = f'{prompts[i]}, {src_style}.'
handler = sa_handler.Handler(pipeline)
sa_args = sa_handler.StyleAlignedArgs(
share_group_norm=True, share_layer_norm=True, share_attention=True,
adain_queries=True, adain_keys=True, adain_values=False,
shared_score_shift=shared_score_shift, shared_score_scale=shared_score_scale,)
handler.register(sa_args)
zT, inversion_callback = inversion.make_inversion_callback(zts, offset=5)
g_cpu = torch.Generator(device='cuda')
g_cpu.manual_seed(10)
latents = torch.randn(len(prompts), 4, 128, 128, device='cuda', generator=g_cpu,
dtype=pipeline.unet.dtype,).to('cuda')
latents[0] = zT
images_a = pipeline(prompts, latents=latents,
callback_on_step_end=inversion_callback,
num_inference_steps=num_inference_steps, guidance_scale=10.0).images
handler.remove()
#mediapy.show_images(images_a, titles=[p[:-(len(src_style) + 3)] for p in prompts])
return images_a
with gr.Blocks() as demo:
with gr. Column():
gr.HTML("""
<h2 style="text-align: center;">Google's StyleAligned Transfer</h2>
"""
)
with gr.Row():
with gr.Column():
ref_path = gr.Image(type="filepath", value="./example_image/medieval-bed.jpeg")
with gr.Column():
ref_style = gr.Textbox(value="medieval painting")
ref_prompt = gr.Textbox(value="Man laying on bed")
prompt1 = gr.Textbox(value="A man working on a laptop")
prompt2 = gr.Textbox(value="A man eating pizza")
prompt3 = gr.Textbox(value="A woman playing on saxophone")
run_button = gr.Button("Submit")
with gr.Column():
results = gr.Gallery()
run_button.click(
fn = run,
inputs = [
ref_path, ref_style, ref_prompt,
prompt1, prompt2, prompt3
],
outputs = [
results
]
)
demo.queue().launch() |