File size: 17,751 Bytes
31757cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2acdfaf
c170458
31757cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bad91c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ae109e
bad91c5
 
7ae109e
bad91c5
a194578
bad91c5
 
2a50a23
3d8a88c
 
 
 
 
 
 
31757cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdae099
 
 
31757cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a50a23
31757cd
 
 
 
 
 
 
 
 
 
 
2a50a23
 
df5d50c
31757cd
 
 
 
 
 
 
8213dab
a4cefe6
31757cd
3d8a88c
bad91c5
 
 
 
 
 
 
 
 
 
 
991c663
 
 
 
bad91c5
2a50a23
bad91c5
c170458
bad91c5
c170458
 
 
2a50a23
 
991c663
169d1b8
991c663
3d8a88c
bad91c5
991c663
 
 
 
 
 
 
bad91c5
 
7ae109e
 
 
2a50a23
 
bad91c5
 
991c663
bad91c5
31757cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
991c663
a4cefe6
991c663
31757cd
 
991c663
31757cd
 
991c663
31757cd
991c663
31757cd
ff7aedc
 
 
31757cd
 
 
 
bad91c5
6b56426
bad91c5
4238eb6
991c663
3d8a88c
31757cd
8213dab
31757cd
3d8a88c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31757cd
 
8213dab
 
 
991c663
2eb5797
 
 
31757cd
8213dab
991c663
31757cd
6b56426
31757cd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
# ------------------------------------------------------------------------
# Modified from Grounded-SAM (https://github.com/IDEA-Research/Grounded-Segment-Anything)
# ------------------------------------------------------------------------
import os
import sys
import random
import warnings

os.system("export BUILD_WITH_CUDA=True")
os.system("python -m pip install -e segment-anything")
os.system("python -m pip install -e GroundingDINO")
os.system("pip install --upgrade diffusers[torch]")
#os.system("pip install opencv-python pycocotools matplotlib")
sys.path.insert(0, './GroundingDINO')
sys.path.insert(0, './segment-anything')
warnings.filterwarnings("ignore")

import cv2
from scipy import ndimage

import gradio as gr
import argparse

import numpy as np
from PIL import Image
from moviepy.editor import *
import torch
from torch.nn import functional as F
import torchvision
import networks
import utils

# Grounding DINO
from groundingdino.util.inference import Model

# SAM
from segment_anything.utils.transforms import ResizeLongestSide

# SD
from diffusers import StableDiffusionPipeline

transform = ResizeLongestSide(1024)
# Green Screen
PALETTE_back = (51, 255, 146)

GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "checkpoints/groundingdino_swint_ogc.pth"
mam_checkpoint="checkpoints/mam_sam_vitb.pth"
output_dir="outputs"
device = 'cuda'
background_list = os.listdir('assets/backgrounds')

#groundingdino_model = None
#mam_predictor = None
#generator = None

# initialize MAM
mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep')
mam_model.to(device)
checkpoint = torch.load(mam_checkpoint, map_location=device)
mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
mam_model = mam_model.eval()

# initialize GroundingDINO
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device)

# initialize StableDiffusionPipeline
generator = StableDiffusionPipeline.from_pretrained("checkpoints/stable-diffusion-v1-5", torch_dtype=torch.float16)
generator.to(device)

def get_frames(video_in):
    frames = []
    #resize the video
    clip = VideoFileClip(video_in)
    
    #check fps
    if clip.fps > 30:
        print("vide rate is over 30, resetting to 30")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=30)
    else:
        print("video rate is OK")
        clip_resized = clip.resize(height=512)
        clip_resized.write_videofile("video_resized.mp4", fps=clip.fps)
    
    print("video resized to 512 height")
    
    # Opens the Video file with CV2
    cap= cv2.VideoCapture("video_resized.mp4")
    
    fps = cap.get(cv2.CAP_PROP_FPS)
    print("video fps: " + str(fps))
    i=0
    while(cap.isOpened()):
        ret, frame = cap.read()
        if ret == False:
            break
        cv2.imwrite('kang'+str(i)+'.jpg',frame)
        frames.append('kang'+str(i)+'.jpg')
        i+=1
    
    cap.release()
    cv2.destroyAllWindows()
    print("broke the video into frames")
    
    return frames, fps


def create_video(frames, fps, type):
    print("building video result")
    clip = ImageSequenceClip(frames, fps=fps)
    clip.write_videofile(f"video_{type}_result.mp4", fps=fps)
    
    return f"video_{type}_result.mp4"


def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, bg_already):
    background_type = "generated_by_text"
    box_threshold = 0.25
    text_threshold = 0.25
    iou_threshold = 0.5
    scribble_mode = "split"
    guidance_mode = "alpha"
    
    #global groundingdino_model, sam_predictor, generator

    # make dir
    os.makedirs(output_dir, exist_ok=True)

    #if mam_predictor is None:
        # initialize MAM
        # build model
    #    mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep')
    #    mam_model.to(device)

        # load checkpoint
    #    checkpoint = torch.load(mam_checkpoint, map_location=device)
    #    mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)

        # inference
    #    mam_model = mam_model.eval()

    #if groundingdino_model is None:
    #    grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device)

    #if generator is None:
    #    generator = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
    #    generator.to(device)

    # load image
    #image_ori = input_image["image"]
    image_ori = input_image
    #scribble = input_image["mask"]
    original_size = image_ori.shape[:2]

    if task_type == 'text':
        if text_prompt is None:
            print('Please input non-empty text prompt')
        with torch.no_grad():
            detections, phrases = grounding_dino_model.predict_with_caption(
                image=cv2.cvtColor(image_ori, cv2.COLOR_RGB2BGR),
                caption=text_prompt,
                box_threshold=box_threshold,
                text_threshold=text_threshold
            )

        if len(detections.xyxy) > 1:
            nms_idx = torchvision.ops.nms(
                torch.from_numpy(detections.xyxy), 
                torch.from_numpy(detections.confidence), 
                iou_threshold,
            ).numpy().tolist()

            detections.xyxy = detections.xyxy[nms_idx]
            detections.confidence = detections.confidence[nms_idx]
    
        bbox = detections.xyxy[np.argmax(detections.confidence)]
        bbox = transform.apply_boxes(bbox, original_size)
        bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)

    image = transform.apply_image(image_ori)
    image = torch.as_tensor(image).to(device)
    image = image.permute(2, 0, 1).contiguous()

    pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).to(device)
    pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).to(device)

    image = (image - pixel_mean) / pixel_std

    h, w = image.shape[-2:]
    pad_size = image.shape[-2:]
    padh = 1024 - h
    padw = 1024 - w
    image = F.pad(image, (0, padw, 0, padh))

    if task_type == 'scribble_point':
        scribble = scribble.transpose(2, 1, 0)[0]
        labeled_array, num_features = ndimage.label(scribble >= 255)
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)
        ### (x,y)
        centers = transform.apply_coords(centers, original_size)
        point_coords = torch.from_numpy(centers).to(device)
        point_coords = point_coords.unsqueeze(0).to(device)
        point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
        if scribble_mode == 'split':
            point_coords = point_coords.permute(1, 0, 2)
            point_labels = point_labels.permute(1, 0)
            
        sample = {'image': image.unsqueeze(0), 'point': point_coords, 'label': point_labels, 'ori_shape': original_size, 'pad_shape': pad_size}
    elif task_type == 'scribble_box':
        scribble = scribble.transpose(2, 1, 0)[0]
        labeled_array, num_features = ndimage.label(scribble >= 255)
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)
        ### (x1, y1, x2, y2)
        x_min = centers[:, 0].min()
        x_max = centers[:, 0].max()
        y_min = centers[:, 1].min()
        y_max = centers[:, 1].max()
        bbox = np.array([x_min, y_min, x_max, y_max])
        bbox = transform.apply_boxes(bbox, original_size)
        bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)

        sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
    elif task_type == 'text':
        sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
    else:
        print("task_type:{} error!".format(task_type))

    with torch.no_grad():
        feas, pred, post_mask = mam_model.forward_inference(sample)

        alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8']
        alpha_pred_os8 = alpha_pred_os8[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
        alpha_pred_os4 = alpha_pred_os4[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
        alpha_pred_os1 = alpha_pred_os1[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]

        alpha_pred_os8 = F.interpolate(alpha_pred_os8, sample['ori_shape'], mode="bilinear", align_corners=False)
        alpha_pred_os4 = F.interpolate(alpha_pred_os4, sample['ori_shape'], mode="bilinear", align_corners=False)
        alpha_pred_os1 = F.interpolate(alpha_pred_os1, sample['ori_shape'], mode="bilinear", align_corners=False)
        
        if guidance_mode == 'mask':
            weight_os8 = utils.get_unknown_tensor_from_mask_oneside(post_mask, rand_width=10, train_mode=False)
            post_mask[weight_os8>0] = alpha_pred_os8[weight_os8>0]
            alpha_pred = post_mask.clone().detach()
        else:
            weight_os8 = utils.get_unknown_box_from_mask(post_mask)
            alpha_pred_os8[weight_os8>0] = post_mask[weight_os8>0]
            alpha_pred = alpha_pred_os8.clone().detach()


        weight_os4 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=20, train_mode=False)
        alpha_pred[weight_os4>0] = alpha_pred_os4[weight_os4>0]
        
        weight_os1 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=10, train_mode=False)
        alpha_pred[weight_os1>0] = alpha_pred_os1[weight_os1>0]
       
        alpha_pred = alpha_pred[0][0].cpu().numpy()

    #### draw
    ### alpha matte
    alpha_rgb = cv2.cvtColor(np.uint8(alpha_pred*255), cv2.COLOR_GRAY2RGB)
    ### com img with background
    global background_img
    if background_type == 'real_world_sample':
        background_img_file = os.path.join('assets/backgrounds', random.choice(background_list))
        background_img = cv2.imread(background_img_file)
        background_img = cv2.cvtColor(background_img, cv2.COLOR_BGR2RGB)
        background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
        com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
        com_img = np.uint8(com_img)
    else:
        if background_prompt is None:
            print('Please input non-empty background prompt')
        else:
            if bg_already is False:
                background_img = generator(background_prompt).images[0]
            
            background_img = np.array(background_img)
            background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
            com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
            com_img = np.uint8(com_img)
    ### com img with green screen
    green_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.array([PALETTE_back], dtype='uint8')
    green_img = np.uint8(green_img)
    #return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')]
    return com_img, green_img, alpha_rgb

def infer(video_in, trim_value, prompt, background_prompt):
    print(prompt)
    break_vid = get_frames(video_in)
    
    frames_list= break_vid[0]
    fps = break_vid[1]
    n_frame = int(trim_value*fps)
    
    if n_frame >= len(frames_list):
        print("video is shorter than the cut value")
        n_frame = len(frames_list)
    
    with_bg_result_frames = []
    with_green_result_frames = []
    with_matte_result_frames = []
    
    print("set stop frames to: " + str(n_frame))
    bg_already = False
    for i in frames_list[0:int(n_frame)]:
        to_numpy_i = Image.open(i).convert("RGB")
        #need to convert to numpy
        # Convert the image to a NumPy array
        image_array = np.array(to_numpy_i)

        results = run_grounded_sam(image_array, prompt, "text", background_prompt, bg_already)
        bg_already = True
        bg_img = Image.fromarray(results[0])
        green_img = Image.fromarray(results[1])
        matte_img = Image.fromarray(results[2])
        
  
        # exporting the images
        bg_img.save(f"bg_result_img-{i}.jpg")
        with_bg_result_frames.append(f"bg_result_img-{i}.jpg")
        green_img.save(f"green_result_img-{i}.jpg")
        with_green_result_frames.append(f"green_result_img-{i}.jpg")
        matte_img.save(f"matte_result_img-{i}.jpg")
        with_matte_result_frames.append(f"matte_result_img-{i}.jpg")
        print("frame " + i + "/" + str(n_frame) + ": done;")

    vid_bg = create_video(with_bg_result_frames, fps, "bg")
    vid_green = create_video(with_green_result_frames, fps, "greenscreen")
    vid_matte = create_video(with_matte_result_frames, fps, "matte")

    bg_already = False
    print("finished !")
    
    return vid_bg, vid_green, vid_matte

if __name__ == "__main__":
    parser = argparse.ArgumentParser("MAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument('--port', type=int, default=7589, help='port to run the server')
    parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
    args = parser.parse_args()

    print(args)

    block = gr.Blocks()
    if not args.no_gradio_queue:
        block = block.queue()

    with block:
        gr.Markdown(
        """
        # Matting Anything in Video Demo
        Welcome to the Matting Anything in Video demo by @fffiloni and upload your video to get started <br/> 
        You may open usage details below to understand how to use this demo.
        ## Usage
        <details>
        You may upload a video to start, for the moment we only support 1 prompt type to get the alpha matte of the target: 
        **text**: Send text prompt to identify the target instance in the `Text prompt` box.

        We also only support 1 background type to support image composition with the alpha matte output:
        **generated_by_text**: Send background text prompt to create a background image with stable diffusion model in the `Background prompt` box.

        </details>
        <a href="https://huggingface.co/spaces/fffiloni/Video-Matting-Anything?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
        <img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
        for longer sequences, more control and no queue.
        """)
   
        with gr.Row():
            with gr.Column():
                video_in = gr.Video(source='upload', type="filepath")
                trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=10, step=1, value=1)
                #task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type")
                #task_type = "text"
                text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle", info="Describe the subject visible in your video that you want to matte")
                #background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type")
                background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York")
                
                run_button = gr.Button(label="Run")
                #with gr.Accordion("Advanced options", open=False):
                #   box_threshold = gr.Slider(
                #       label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
                #   )
                #   text_threshold = gr.Slider(
                #       label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
                #   )
                #   iou_threshold = gr.Slider(
                #       label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
                #   )
                #   scribble_mode = gr.Dropdown(
                #       ["merge", "split"], value="split", label="scribble_mode"
                #   )
                #   guidance_mode = gr.Dropdown(
                #       ["mask", "alpha"], value="alpha", label="guidance_mode", info="mask guidance is for complex scenes with multiple instances, alpha guidance is for simple scene with single instance"
                #   )

            with gr.Column():
                #gallery = gr.Gallery(
                #    label="Generated images", show_label=True, elem_id="gallery"
                #).style(preview=True, grid=3, object_fit="scale-down")
                vid_bg_out = gr.Video(label="Video with background")
                with gr.Row():
                    vid_green_out = gr.Video(label="Video green screen")
                    vid_matte_out = gr.Video(label="Video matte")

        run_button.click(fn=infer, inputs=[
                        video_in, trim_in, text_prompt, background_prompt], outputs=[vid_bg_out, vid_green_out, vid_matte_out])

    block.queue(max_size=24).launch(debug=args.debug, share=args.share, show_error=True)
    #block.queue(concurrency_count=100)
    #block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)