Spaces:
Sleeping
Sleeping
## Vision Transformers for Dense Prediction | |
This repository contains code and models for our [paper](https://arxiv.org/abs/2103.13413): | |
> Vision Transformers for Dense Prediction | |
> René Ranftl, Alexey Bochkovskiy, Vladlen Koltun | |
### Changelog | |
* [March 2021] Initial release of inference code and models | |
### Setup | |
1) Download the model weights and place them in the `weights` folder: | |
Monodepth: | |
- [dpt_hybrid-midas-501f0c75.pt](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-midas-501f0c75.pt), [Mirror](https://drive.google.com/file/d/1dgcJEYYw1F8qirXhZxgNK8dWWz_8gZBD/view?usp=sharing) | |
- [dpt_large-midas-2f21e586.pt](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt), [Mirror](https://drive.google.com/file/d/1vnuhoMc6caF-buQQ4hK0CeiMk9SjwB-G/view?usp=sharing) | |
Segmentation: | |
- [dpt_hybrid-ade20k-53898607.pt](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid-ade20k-53898607.pt), [Mirror](https://drive.google.com/file/d/1zKIAMbltJ3kpGLMh6wjsq65_k5XQ7_9m/view?usp=sharing) | |
- [dpt_large-ade20k-b12dca68.pt](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-ade20k-b12dca68.pt), [Mirror](https://drive.google.com/file/d/1foDpUM7CdS8Zl6GPdkrJaAOjskb7hHe-/view?usp=sharing) | |
2) Set up dependencies: | |
```shell | |
pip install -r requirements.txt | |
``` | |
The code was tested with Python 3.7, PyTorch 1.8.0, OpenCV 4.5.1, and timm 0.4.5 | |
### Usage | |
1) Place one or more input images in the folder `input`. | |
2) Run a monocular depth estimation model: | |
```shell | |
python run_monodepth.py | |
``` | |
Or run a semantic segmentation model: | |
```shell | |
python run_segmentation.py | |
``` | |
3) The results are written to the folder `output_monodepth` and `output_semseg`, respectively. | |
Use the flag `-t` to switch between different models. Possible options are `dpt_hybrid` (default) and `dpt_large`. | |
**Additional models:** | |
- Monodepth finetuned on KITTI: [dpt_hybrid_kitti-cb926ef4.pt](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid_kitti-cb926ef4.pt) [Mirror](https://drive.google.com/file/d/1-oJpORoJEdxj4LTV-Pc17iB-smp-khcX/view?usp=sharing) | |
- Monodepth finetuned on NYUv2: [dpt_hybrid_nyu-2ce69ec7.pt](https://github.com/intel-isl/DPT/releases/download/1_0/dpt_hybrid_nyu-2ce69ec7.pt) [Mirror](https\://drive.google.com/file/d/1NjiFw1Z9lUAfTPZu4uQ9gourVwvmd58O/view?usp=sharing) | |
Run with | |
```shell | |
python run_monodepth -t [dpt_hybrid_kitti|dpt_hybrid_nyu] | |
``` | |
### Evaluation | |
Hints on how to evaluate monodepth models can be found here: https://github.com/intel-isl/DPT/blob/main/EVALUATION.md | |
### Citation | |
Please cite our papers if you use this code or any of the models. | |
``` | |
@article{Ranftl2021, | |
author = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun}, | |
title = {Vision Transformers for Dense Prediction}, | |
journal = {ArXiv preprint}, | |
year = {2021}, | |
} | |
``` | |
``` | |
@article{Ranftl2020, | |
author = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun}, | |
title = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer}, | |
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, | |
year = {2020}, | |
} | |
``` | |
### Acknowledgements | |
Our work builds on and uses code from [timm](https://github.com/rwightman/pytorch-image-models) and [PyTorch-Encoding](https://github.com/zhanghang1989/PyTorch-Encoding). We'd like to thank the authors for making these libraries available. | |
### License | |
MIT License | |