Spaces:
Running
Running
import gradio as gr | |
import io | |
import numpy as np | |
from PIL import Image | |
import pydub | |
from scipy.io import wavfile | |
import torch | |
import torchaudio | |
import argparse | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-i", "--input", help="Input file to process, anything that FFMPEG supports, but wav and mp3 are recommended") | |
parser.add_argument("-o", "--output", help="Output Image") | |
parser.add_argument("-m", "--maxvol", default=100, help="Max Volume, 255 for identical results") | |
parser.add_argument("-p", "--powerforimage", default=0.25, help="Power for Image") | |
parser.add_argument("-n", "--nmels", default=512, help="n_mels to use for Image, basically width. Higher = more fidelity") | |
args = parser.parse_args() | |
def spectrogram_image_from_wav(wav_bytes: io.BytesIO, max_volume: float = 50, power_for_image: float = 0.25, ms_duration: int = 5119) -> Image.Image: | |
""" | |
Generate a spectrogram image from a WAV file. | |
""" | |
# Read WAV file from bytes | |
sample_rate, waveform = wavfile.read(wav_bytes) | |
#sample_rate = 44100 # [Hz] | |
clip_duration_ms = ms_duration # [ms] | |
bins_per_image = 512 | |
n_mels = int(args.nmels) | |
mel_scale = True | |
# FFT parameters | |
window_duration_ms = 100 # [ms] | |
padded_duration_ms = 400 # [ms] | |
step_size_ms = 10 # [ms] | |
# Derived parameters | |
num_samples = int(512 / float(bins_per_image) * clip_duration_ms) * sample_rate | |
n_fft = int(padded_duration_ms / 1000.0 * sample_rate) | |
hop_length = int(step_size_ms / 1000.0 * sample_rate) | |
win_length = int(window_duration_ms / 1000.0 * sample_rate) | |
# Compute spectrogram from waveform | |
Sxx = spectrogram_from_waveform( | |
waveform=waveform, | |
sample_rate=sample_rate, | |
n_fft=n_fft, | |
hop_length=hop_length, | |
win_length=win_length, | |
mel_scale=mel_scale, | |
n_mels=n_mels, | |
) | |
# Convert spectrogram to image | |
image = image_from_spectrogram(Sxx, max_volume=max_volume, power_for_image=power_for_image) | |
return image | |
def spectrogram_from_waveform( | |
waveform: np.ndarray, | |
sample_rate: int, | |
n_fft: int, | |
hop_length: int, | |
win_length: int, | |
mel_scale: bool = True, | |
n_mels: int = 512, | |
) -> np.ndarray: | |
""" | |
Compute a spectrogram from a waveform. | |
""" | |
spectrogram_func = torchaudio.transforms.Spectrogram( | |
n_fft=n_fft, | |
power=None, | |
hop_length=hop_length, | |
win_length=win_length, | |
) | |
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1) | |
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0] | |
Sxx_mag = np.abs(Sxx_complex) | |
if mel_scale: | |
mel_scaler = torchaudio.transforms.MelScale( | |
n_mels=n_mels, | |
sample_rate=sample_rate, | |
f_min=0, | |
f_max=10000, | |
n_stft=n_fft // 2 + 1, | |
norm=None, | |
mel_scale="htk", | |
) | |
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy() | |
return Sxx_mag | |
def image_from_spectrogram( | |
data: np.ndarray, | |
max_volume: float = 50, | |
power_for_image: float = 0.25 | |
) -> Image.Image: | |
data = np.power(data, power_for_image) | |
data = data / (max_volume / 255) | |
data = 255 - data | |
data = data[::-1] | |
image = Image.fromarray(data.astype(np.uint8)) | |
return image | |
def spectrogram_image_from_file(filename, max_volume: float = 50, power_for_image: float = 0.25) -> Image.Image: | |
""" | |
Generate a spectrogram image from an MP3 file. | |
""" | |
max_volume = int(max_volume) | |
power_for_image = float(args.powerforimage) | |
# Load MP3 file into AudioSegment object | |
audio = pydub.AudioSegment.from_file(filename) | |
# Convert to mono and set frame rate | |
audio = audio.set_channels(1) | |
audio = audio.set_frame_rate(44100) | |
length_in_ms = len(audio) | |
print("ORIGINAL AUDIO LENGTH IN MS:", length_in_ms) | |
# Extract first 5 seconds of audio data | |
audio = audio[:5119] | |
length_in_ms = len(audio) | |
print("CROPPED AUDIO LENGTH IN MS:", length_in_ms) | |
# Convert to WAV and save as BytesIO object | |
wav_bytes = io.BytesIO() | |
audio.export("clip.wav", format="wav") | |
audio.export(wav_bytes, format="wav") | |
wav_bytes.seek(0) | |
# Generate spectrogram image from WAV file | |
return spectrogram_image_from_wav(wav_bytes, max_volume=max_volume, power_for_image=power_for_image, ms_duration=length_in_ms) | |
def convert(audio): | |
image = spectrogram_image_from_file(audio, 50) | |
return image | |
gr.Interface(fn=convert, inputs=[gr.Audio(source="upload", type="filepath")], outputs=[gr.Image()]).launch() |