Spaces:
Running
Running
File size: 4,616 Bytes
1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 02eee7c 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 1e154b5 5dfe08d 048ef8e 1e154b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
import gradio as gr
import io
import numpy as np
from PIL import Image
import pydub
from scipy.io import wavfile
import torch
import torchaudio
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-i", "--input", help="Input file to process, anything that FFMPEG supports, but wav and mp3 are recommended")
parser.add_argument("-o", "--output", help="Output Image")
parser.add_argument("-m", "--maxvol", default=100, help="Max Volume, 255 for identical results")
parser.add_argument("-p", "--powerforimage", default=0.25, help="Power for Image")
parser.add_argument("-n", "--nmels", default=512, help="n_mels to use for Image, basically width. Higher = more fidelity")
args = parser.parse_args()
def spectrogram_image_from_wav(wav_bytes: io.BytesIO, max_volume: float = 50, power_for_image: float = 0.25, ms_duration: int = 5119) -> Image.Image:
"""
Generate a spectrogram image from a WAV file.
"""
# Read WAV file from bytes
sample_rate, waveform = wavfile.read(wav_bytes)
#sample_rate = 44100 # [Hz]
clip_duration_ms = ms_duration # [ms]
bins_per_image = 512
n_mels = int(args.nmels)
mel_scale = True
# FFT parameters
window_duration_ms = 100 # [ms]
padded_duration_ms = 400 # [ms]
step_size_ms = 10 # [ms]
# Derived parameters
num_samples = int(512 / float(bins_per_image) * clip_duration_ms) * sample_rate
n_fft = int(padded_duration_ms / 1000.0 * sample_rate)
hop_length = int(step_size_ms / 1000.0 * sample_rate)
win_length = int(window_duration_ms / 1000.0 * sample_rate)
# Compute spectrogram from waveform
Sxx = spectrogram_from_waveform(
waveform=waveform,
sample_rate=sample_rate,
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
mel_scale=mel_scale,
n_mels=n_mels,
)
# Convert spectrogram to image
image = image_from_spectrogram(Sxx, max_volume=max_volume, power_for_image=power_for_image)
return image
def spectrogram_from_waveform(
waveform: np.ndarray,
sample_rate: int,
n_fft: int,
hop_length: int,
win_length: int,
mel_scale: bool = True,
n_mels: int = 512,
) -> np.ndarray:
"""
Compute a spectrogram from a waveform.
"""
spectrogram_func = torchaudio.transforms.Spectrogram(
n_fft=n_fft,
power=None,
hop_length=hop_length,
win_length=win_length,
)
waveform_tensor = torch.from_numpy(waveform.astype(np.float32)).reshape(1, -1)
Sxx_complex = spectrogram_func(waveform_tensor).numpy()[0]
Sxx_mag = np.abs(Sxx_complex)
if mel_scale:
mel_scaler = torchaudio.transforms.MelScale(
n_mels=n_mels,
sample_rate=sample_rate,
f_min=0,
f_max=10000,
n_stft=n_fft // 2 + 1,
norm=None,
mel_scale="htk",
)
Sxx_mag = mel_scaler(torch.from_numpy(Sxx_mag)).numpy()
return Sxx_mag
def image_from_spectrogram(
data: np.ndarray,
max_volume: float = 50,
power_for_image: float = 0.25
) -> Image.Image:
data = np.power(data, power_for_image)
data = data / (max_volume / 255)
data = 255 - data
data = data[::-1]
image = Image.fromarray(data.astype(np.uint8))
return image
def spectrogram_image_from_file(filename, max_volume: float = 50, power_for_image: float = 0.25) -> Image.Image:
"""
Generate a spectrogram image from an MP3 file.
"""
max_volume = int(max_volume)
power_for_image = float(args.powerforimage)
# Load MP3 file into AudioSegment object
audio = pydub.AudioSegment.from_file(filename)
# Convert to mono and set frame rate
audio = audio.set_channels(1)
audio = audio.set_frame_rate(44100)
length_in_ms = len(audio)
print("ORIGINAL AUDIO LENGTH IN MS:", length_in_ms)
# Extract first 5 seconds of audio data
audio = audio[:5119]
length_in_ms = len(audio)
print("CROPPED AUDIO LENGTH IN MS:", length_in_ms)
# Convert to WAV and save as BytesIO object
wav_bytes = io.BytesIO()
audio.export("clip.wav", format="wav")
audio.export(wav_bytes, format="wav")
wav_bytes.seek(0)
# Generate spectrogram image from WAV file
return spectrogram_image_from_wav(wav_bytes, max_volume=max_volume, power_for_image=power_for_image, ms_duration=length_in_ms)
def convert(audio):
image = spectrogram_image_from_file(audio, 50)
return image
gr.Interface(fn=convert, inputs=[gr.Audio(source="upload", type="filepath")], outputs=[gr.Image()]).launch() |