Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
from urllib.parse import urlparse | |
import requests | |
import time | |
import os | |
from utils.gradio_helpers import parse_outputs, process_outputs | |
names = ['prompt', 'negative_prompt', 'subject', 'number_of_outputs', 'number_of_images_per_pose', 'randomise_poses', 'output_format', 'output_quality', 'seed'] | |
def predict(request: gr.Request, *args, progress=gr.Progress(track_tqdm=True)): | |
headers = {'Content-Type': 'application/json'} | |
payload = {"input": {}} | |
base_url = "http://0.0.0.0:7860" | |
for i, key in enumerate(names): | |
value = args[i] | |
if value and (os.path.exists(str(value))): | |
value = f"{base_url}/file=" + value | |
if value is not None and value != "": | |
payload["input"][key] = value | |
response = requests.post("http://0.0.0.0:5000/predictions", headers=headers, json=payload) | |
if response.status_code == 201: | |
follow_up_url = response.json()["urls"]["get"] | |
response = requests.get(follow_up_url, headers=headers) | |
while response.json()["status"] != "succeeded": | |
if response.json()["status"] == "failed": | |
raise gr.Error("The submission failed!") | |
response = requests.get(follow_up_url, headers=headers) | |
time.sleep(1) | |
if response.status_code == 200: | |
json_response = response.json() | |
#If the output component is JSON return the entire output response | |
if(outputs[0].get_config()["name"] == "json"): | |
return json_response["output"] | |
predict_outputs = parse_outputs(json_response["output"]) | |
processed_outputs = process_outputs(predict_outputs) | |
return tuple(processed_outputs) if len(processed_outputs) > 1 else processed_outputs[0] | |
else: | |
if(response.status_code == 409): | |
raise gr.Error(f"Sorry, the Cog image is still processing. Try again in a bit.") | |
raise gr.Error(f"The submission failed! Error: {response.status_code}") | |
title = "Demo for consistent-character cog image by fofr" | |
description = "Create images of a given character in different poses • running cog image by fofr" | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 1400px; | |
text-align: left; | |
} | |
""" | |
with gr.Blocks(css=css) as app: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(f""" | |
<h2 style="text-align: center;">Consistent Character Workflow</h2> | |
<p style="text-align: center;">{description}</p> | |
""") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt = gr.Textbox( | |
label="Prompt", info='''Describe the subject. Include clothes and hairstyle for more consistency.''' | |
) | |
subject = gr.Image( | |
label="Subject", type="filepath" | |
) | |
submit_btn = gr.Button("Submit") | |
with gr.Accordion(label="Advanced Settings", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", info='''Things you do not want to see in your image''', | |
value="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry" | |
) | |
with gr.Row(): | |
number_of_outputs = gr.Slider( | |
label="Number Of Outputs", info='''The number of images to generate.''', value=2, | |
minimum=1, maximum=4, step=1, | |
) | |
number_of_images_per_pose = gr.Slider( | |
label="Number Of Images Per Pose", info='''The number of images to generate for each pose.''', value=1, | |
minimum=1, maximum=4, step=1, | |
) | |
with gr.Row(): | |
randomise_poses = gr.Checkbox( | |
label="Randomise Poses", info='''Randomise the poses used.''', value=True | |
) | |
output_format = gr.Dropdown( | |
choices=['webp', 'jpg', 'png'], label="output_format", info='''Format of the output images''', value="webp" | |
) | |
with gr.Row(): | |
output_quality = gr.Number( | |
label="Output Quality", info='''Quality of the output images, from 0 to 100. 100 is best quality, 0 is lowest quality.''', value=80 | |
) | |
seed = gr.Number( | |
label="Seed", info='''Set a seed for reproducibility. Random by default.''', value=None | |
) | |
with gr.Column(scale=1.5): | |
consistent_results = gr.Gallery(label="Consistent Results") | |
inputs = [prompt, negative_prompt, subject, number_of_outputs, number_of_images_per_pose, randomise_poses, output_format, output_quality, seed] | |
outputs = [consistent_results] | |
submit_btn.click( | |
fn = predict, | |
inputs = inputs, | |
outputs = outputs, | |
show_api = False | |
) | |
app.queue(max_size=12, api_open=False).launch(share=False, show_api=False) | |