Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import login | |
import os | |
is_shared_ui = True if "fffiloni/sdxl-control-loras" in os.environ['SPACE_ID'] else False | |
hf_token = os.environ.get("HF_TOKEN") | |
login(token=hf_token) | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained( | |
"diffusers/controlnet-canny-sdxl-1.0", | |
torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
variant="fp16", | |
use_safetensors=True | |
) | |
pipe.to("cuda") | |
#pipe.enable_model_cpu_offload() | |
from PIL import Image | |
def resize_image(input_path, output_path, target_height): | |
# Open the input image | |
img = Image.open(input_path) | |
# Calculate the aspect ratio of the original image | |
original_width, original_height = img.size | |
original_aspect_ratio = original_width / original_height | |
# Calculate the new width while maintaining the aspect ratio and the target height | |
new_width = int(target_height * original_aspect_ratio) | |
# Resize the image while maintaining the aspect ratio and fixing the height | |
img = img.resize((new_width, target_height), Image.LANCZOS) | |
# Save the resized image | |
img.save(output_path) | |
return output_path | |
def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed, progress=gr.Progress(track_tqdm=True)): | |
prompt = prompt | |
negative_prompt = negative_prompt | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
if image_in == None: | |
raise gr.Error("You forgot to upload a source image.") | |
image_in = resize_image(image_in, "resized_input.jpg", 1024) | |
if preprocessor == "canny": | |
image = load_image(image_in) | |
image = np.array(image) | |
image = cv2.Canny(image, 100, 200) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
image = Image.fromarray(image) | |
if use_custom_model: | |
if custom_model == "": | |
raise gr.Error("you forgot to set a custom model name.") | |
custom_model = model_name | |
# This is where you load your trained weights | |
pipe.load_lora_weights(custom_model, use_auth_token=True) | |
lora_scale=custom_lora_weight | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guidance_scale = float(guidance_scale), | |
num_inference_steps=inf_steps, | |
generator=generator, | |
cross_attention_kwargs={"scale": lora_scale} | |
).images | |
else: | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=image, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
guidance_scale = float(guidance_scale), | |
num_inference_steps=inf_steps, | |
generator=generator, | |
).images | |
images[0].save(f"result.png") | |
return f"result.png" | |
css=""" | |
#col-container{ | |
margin: 0 auto; | |
max-width: 680px; | |
text-align: left; | |
} | |
div#warning-duplicate { | |
background-color: #ebf5ff; | |
padding: 0 10px 5px; | |
margin: 20px 0; | |
} | |
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p { | |
color: #0f4592!important; | |
} | |
div#warning-duplicate strong { | |
color: #0f4592; | |
} | |
p.actions { | |
display: flex; | |
align-items: center; | |
margin: 20px 0; | |
} | |
div#warning-duplicate .actions a { | |
display: inline-block; | |
margin-right: 10px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
if is_shared_ui: | |
top_description = gr.HTML(f''' | |
<div class="gr-prose"> | |
<h2><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg> | |
Note: you might want to use a custom LoRa model</h2> | |
<p class="main-message"> | |
To do so, <strong>duplicate the Space</strong> and run it on your own profile using <strong>your own access token</strong> and eventually a GPU (T4-small or A10G-small) for faster inference without waiting in the queue.<br /> | |
</p> | |
<p class="actions"> | |
<a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" /> | |
</a> | |
to start using private models and skip the queue | |
</p> | |
</div> | |
''', elem_id="warning-duplicate") | |
gr.HTML(""" | |
<h2 style="text-align: center;">SD-XL Control LoRas</h2> | |
<p style="text-align: center;">Use StableDiffusion XL with <a href="https://huggingface.co/collections/diffusers/sdxl-controlnets-64f9c35846f3f06f5abe351f">Diffusers' SDXL ControlNets</a></p> | |
""") | |
image_in = gr.Image(source="upload", type="filepath") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured") | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=7.5) | |
inf_steps = gr.Slider(label="Inference Steps", minimum="25", maximum="50", step=1, value=25) | |
with gr.Column(): | |
preprocessor = gr.Dropdown(label="Preprocessor", choices=["canny"], value="canny", interactive=False, info="For the moment, only canny is available") | |
controlnet_conditioning_scale = gr.Slider(label="Controlnet conditioning Scale", minimum=0.1, maximum=0.9, step=0.01, value=0.5) | |
seed = gr.Slider(label="seed", minimum=0, maximum=500000, step=1, value=42) | |
use_custom_model = gr.Checkbox(label="Use a public custom model ?(optional)", value=False, info="To use a private model, you'll prefer to duplicate the space with your own access token.") | |
with gr.Row(): | |
model_name = gr.Textbox(label="Custom Model to use", placeholder="username/my_custom_public_model") | |
custom_lora_weight = gr.Slider(label="Custom model weights", minimum=0.1, maximum=0.9, step=0.1, value=0.9) | |
submit_btn = gr.Button("Submit") | |
result = gr.Image(label="Result") | |
submit_btn.click( | |
fn = infer, | |
inputs = [use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, inf_steps, seed], | |
outputs = [result] | |
) | |
demo.queue(max_size=12).launch() | |