Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import torch | |
from huggingface_hub import snapshot_download | |
# import argparse | |
snapshot_download(repo_id="fffiloni/svd_keyframe_interpolation", local_dir="checkpoints") | |
checkpoint_dir = "checkpoints/svd_reverse_motion_with_attnflip" | |
from diffusers.utils import load_image, export_to_video | |
from diffusers import UNetSpatioTemporalConditionModel | |
from custom_diffusers.pipelines.pipeline_frame_interpolation_with_noise_injection import FrameInterpolationWithNoiseInjectionPipeline | |
from custom_diffusers.schedulers.scheduling_euler_discrete import EulerDiscreteScheduler | |
from attn_ctrl.attention_control import (AttentionStore, | |
register_temporal_self_attention_control, | |
register_temporal_self_attention_flip_control, | |
) | |
pretrained_model_name_or_path = "stabilityai/stable-video-diffusion-img2vid-xt" | |
noise_scheduler = EulerDiscreteScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler") | |
pipe = FrameInterpolationWithNoiseInjectionPipeline.from_pretrained( | |
pretrained_model_name_or_path, | |
scheduler=noise_scheduler, | |
variant="fp16", | |
torch_dtype=torch.float16, | |
) | |
ref_unet = pipe.ori_unet | |
state_dict = pipe.unet.state_dict() | |
# computing delta w | |
finetuned_unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
checkpoint_dir, | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
) | |
assert finetuned_unet.config.num_frames==14 | |
ori_unet = UNetSpatioTemporalConditionModel.from_pretrained( | |
"stabilityai/stable-video-diffusion-img2vid", | |
subfolder="unet", | |
variant='fp16', | |
torch_dtype=torch.float16, | |
) | |
finetuned_state_dict = finetuned_unet.state_dict() | |
ori_state_dict = ori_unet.state_dict() | |
for name, param in finetuned_state_dict.items(): | |
if 'temporal_transformer_blocks.0.attn1.to_v' in name or "temporal_transformer_blocks.0.attn1.to_out.0" in name: | |
delta_w = param - ori_state_dict[name] | |
state_dict[name] = state_dict[name] + delta_w | |
pipe.unet.load_state_dict(state_dict) | |
controller_ref= AttentionStore() | |
register_temporal_self_attention_control(ref_unet, controller_ref) | |
controller = AttentionStore() | |
register_temporal_self_attention_flip_control(pipe.unet, controller, controller_ref) | |
device = "cuda" | |
pipe = pipe.to(device) | |
def check_outputs_folder(folder_path): | |
# Check if the folder exists | |
if os.path.exists(folder_path) and os.path.isdir(folder_path): | |
# Delete all contents inside the folder | |
for filename in os.listdir(folder_path): | |
file_path = os.path.join(folder_path, filename) | |
try: | |
if os.path.isfile(file_path) or os.path.islink(file_path): | |
os.unlink(file_path) # Remove file or link | |
elif os.path.isdir(file_path): | |
shutil.rmtree(file_path) # Remove directory | |
except Exception as e: | |
print(f'Failed to delete {file_path}. Reason: {e}') | |
else: | |
print(f'The folder {folder_path} does not exist.') | |
# Custom CUDA memory management function | |
def cuda_memory_cleanup(): | |
torch.cuda.empty_cache() | |
torch.cuda.ipc_collect() | |
gc.collect() | |
def infer(frame1_path, frame2_path): | |
seed = 42 | |
num_inference_steps = 10 | |
noise_injection_steps = 0 | |
noise_injection_ratio = 0.5 | |
weighted_average = False | |
generator = torch.Generator(device) | |
if seed is not None: | |
generator = generator.manual_seed(seed) | |
frame1 = load_image(frame1_path) | |
frame1 = frame1.resize((512, 288)) | |
frame2 = load_image(frame2_path) | |
frame2 = frame2.resize((512, 288)) | |
cuda_memory_cleanup() | |
frames = pipe(image1=frame1, image2=frame2, | |
num_inference_steps=num_inference_steps, # 50 | |
generator=generator, | |
weighted_average=weighted_average, # True | |
noise_injection_steps=noise_injection_steps, # 0 | |
noise_injection_ratio= noise_injection_ratio, # 0.5 | |
decode_chunk_size=6 | |
).frames[0] | |
cuda_memory_cleanup() | |
print(f"FRAMES: {frames}") | |
out_dir = "result" | |
check_outputs_folder(out_dir) | |
os.makedirs(out_dir, exist_ok=True) | |
out_path = "result/video_result.mp4" | |
if out_path.endswith('.gif'): | |
frames[0].save(out_path, save_all=True, append_images=frames[1:], duration=142, loop=0) | |
else: | |
export_to_video(frames, out_path, fps=7) | |
return out_path | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
gr.Markdown("# Keyframe Interpolation with Stable Video Diffusion") | |
with gr.Row(): | |
with gr.Column(): | |
image_input1 = gr.Image(type="filepath") | |
image_input2 = gr.Image(type="filepath") | |
submit_btn = gr.Button("Submit") | |
with gr.Column(): | |
output = gr.Video() | |
submit_btn.click( | |
fn = infer, | |
inputs = [image_input1, image_input2], | |
outputs = [output], | |
show_api = False | |
) | |
demo.queue().launch(show_api=False, show_error=True) |