Files changed (3) hide show
  1. README.md +1 -1
  2. app.py +25 -54
  3. requirements.txt +0 -3
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 🐠
4
  colorFrom: blue
5
  colorTo: gray
6
  sdk: gradio
7
- sdk_version: 5.4.0
8
  app_file: app.py
9
  pinned: false
10
  duplicated_from: fffiloni/zeroscope
 
4
  colorFrom: blue
5
  colorTo: gray
6
  sdk: gradio
7
+ sdk_version: 3.35.2
8
  app_file: app.py
9
  pinned: false
10
  duplicated_from: fffiloni/zeroscope
app.py CHANGED
@@ -1,59 +1,26 @@
1
  import gradio as gr
2
- import os
3
- from gradio_client import Client, handle_file
4
- import numpy as np
5
- import tempfile
6
- import imageio
7
-
8
  import torch
9
  from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
 
10
 
11
  pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
12
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
13
  pipe.enable_model_cpu_offload()
14
 
15
- hf_token = os.environ.get("HF_TOKEN")
16
-
17
- def get_caption(image_in):
18
- kosmos2_client = Client("fffiloni/Kosmos-2-API", hf_token=hf_token)
19
- kosmos2_result = kosmos2_client.predict(
20
- image_input=handle_file(image_in),
21
- text_input="Detailed",
22
- api_name="/generate_predictions"
23
- )
24
- print(f"KOSMOS2 RETURNS: {kosmos2_result}")
25
-
26
- data = kosmos2_result[1]
27
-
28
- # Extract and combine tokens starting from the second element
29
- sentence = ''.join(item['token'] for item in data[1:])
30
 
31
- # Find the last occurrence of "."
32
- #last_period_index = full_sentence.rfind('.')
 
 
33
 
34
- # Truncate the string up to the last period
35
- #truncated_caption = full_sentence[:last_period_index + 1]
36
-
37
- # print(truncated_caption)
38
- #print(f"\n—\nIMAGE CAPTION: {truncated_caption}")
39
-
40
- return sentence
41
-
42
- def export_to_video(frames: np.ndarray, fps: int) -> str:
43
- frames = np.clip((frames * 255), 0, 255).astype(np.uint8)
44
- out_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
45
- writer = imageio.get_writer(out_file.name, format="FFMPEG", fps=fps)
46
- for frame in frames:
47
- writer.append_data(frame)
48
- writer.close()
49
- return out_file.name
50
-
51
- def infer(image_init, progress=gr.Progress(track_tqdm=True)):
52
- prompt = get_caption(image_init)
53
- video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames[0]
54
- video_path = export_to_video(video_frames, 12)
55
  print(video_path)
56
- return prompt, video_path
57
 
58
  css = """
59
  #col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
@@ -135,18 +102,22 @@ with gr.Blocks(css=css) as demo:
135
  """
136
  )
137
 
138
- image_init = gr.Image(label="Image Init", type="filepath", sources=["upload"], elem_id="image-init")
139
  #inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
140
  submit_btn = gr.Button("Submit")
141
- coca_cap = gr.Textbox(label="Caption", placeholder="Kosmos-2 caption will be displayed here", elem_id="coca-cap-in")
142
  video_result = gr.Video(label="Video Output", elem_id="video-output")
143
 
144
- submit_btn.click(
145
- fn=infer,
146
- inputs=[image_init],
147
- outputs=[coca_cap, video_result],
148
- show_api=False
149
- )
 
 
 
 
150
 
151
- demo.queue(max_size=12).launch(show_api=False)
152
 
 
1
  import gradio as gr
2
+ from share_btn import community_icon_html, loading_icon_html, share_js
 
 
 
 
 
3
  import torch
4
  from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
5
+ from diffusers.utils import export_to_video
6
 
7
  pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
8
  pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
9
  pipe.enable_model_cpu_offload()
10
 
11
+ caption = gr.load(name="spaces/fffiloni/CoCa-clone")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ def create_image_caption(image_init):
14
+ cap = caption(image_init, "Nucleus sampling", 1.2, 0.5, 5, 20, fn_index=0)
15
+ print("cap: " + cap)
16
+ return cap
17
 
18
+ def infer(image_init):
19
+ prompt = create_image_caption(image_init)
20
+ video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
21
+ video_path = export_to_video(video_frames)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22
  print(video_path)
23
+ return prompt, video_path, gr.Group.update(visible=True)
24
 
25
  css = """
26
  #col-container {max-width: 510px; margin-left: auto; margin-right: auto;}
 
102
  """
103
  )
104
 
105
+ image_init = gr.Image(label="Image Init",type="filepath", source="upload", elem_id="image-init")
106
  #inference_steps = gr.Slider(label="Inference Steps", minimum=10, maximum=100, step=1, value=40, interactive=False)
107
  submit_btn = gr.Button("Submit")
108
+ coca_cap = gr.Textbox(label="Caption", placeholder="CoCa Caption will be displayed here", elem_id="coca-cap-in")
109
  video_result = gr.Video(label="Video Output", elem_id="video-output")
110
 
111
+ with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
112
+ community_icon = gr.HTML(community_icon_html)
113
+ loading_icon = gr.HTML(loading_icon_html)
114
+ share_button = gr.Button("Share to community", elem_id="share-btn")
115
+
116
+ submit_btn.click(fn=infer,
117
+ inputs=[image_init],
118
+ outputs=[coca_cap, video_result, share_group])
119
+
120
+ share_button.click(None, [], [], _js=share_js)
121
 
122
+ demo.queue(max_size=12).launch()
123
 
requirements.txt CHANGED
@@ -1,9 +1,6 @@
1
- numpy==1.26.4
2
  diffusers
3
  transformers
4
  accelerate
5
  torch==2.0.1
6
  opencv-python
7
- imageio[ffmpeg]==2.34.1
8
- huggingface_hub==0.25.2
9
 
 
 
1
  diffusers
2
  transformers
3
  accelerate
4
  torch==2.0.1
5
  opencv-python
 
 
6