Spaces:
Sleeping
Sleeping
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import time | |
import random | |
from datetime import datetime | |
# Theme and styling constants | |
THEME = gr.themes.Soft( | |
primary_hue="indigo", | |
secondary_hue="blue", | |
neutral_hue="slate", | |
radius_size=gr.themes.sizes.radius_sm, | |
font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"], | |
) | |
# Configuration | |
MODEL_ID = "HuggingFaceH4/zephyr-7b-beta" | |
DEFAULT_SYSTEM_MSG = "You are a helpful, friendly, and knowledgeable AI assistant." | |
# Initialize the client | |
client = InferenceClient(MODEL_ID) | |
def format_history(history): | |
"""Helper function to format chat history for display""" | |
formatted = [] | |
for user_msg, ai_msg in history: | |
if user_msg: | |
formatted.append({"role": "user", "content": user_msg}) | |
if ai_msg: | |
formatted.append({"role": "assistant", "content": ai_msg}) | |
return formatted | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
model_id, | |
typing_animation=True | |
): | |
"""Generate response from the model with typing animation effect""" | |
# Format messages for the API | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Use the selected model | |
inference_client = InferenceClient(model_id) | |
# Generate response with typing animation | |
response = "" | |
for message in inference_client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
if token: | |
response += token | |
# If typing animation is enabled, add a small random delay | |
if typing_animation: | |
time.sleep(random.uniform(0.01, 0.03)) | |
yield response | |
def create_interface(): | |
"""Create and configure the Gradio interface""" | |
# Available models dropdown | |
models = [ | |
"HuggingFaceH4/zephyr-7b-beta", | |
"mistralai/Mistral-7B-Instruct-v0.2", | |
"meta-llama/Llama-2-7b-chat-hf", | |
"gpt2" # Fallback for quick testing | |
] | |
# Custom CSS for better styling | |
css = """ | |
.gradio-container { | |
min-height: 100vh; | |
} | |
.message-bubble { | |
padding: 10px 15px; | |
border-radius: 12px; | |
margin-bottom: 8px; | |
} | |
.user-bubble { | |
background-color: #e9f5ff; | |
margin-left: 20px; | |
} | |
.bot-bubble { | |
background-color: #f0f4f9; | |
margin-right: 20px; | |
} | |
.timestamp { | |
font-size: 0.7em; | |
color: #888; | |
margin-top: 2px; | |
} | |
""" | |
with gr.Blocks(theme=THEME, css=css) as demo: | |
gr.Markdown("# 🤖 Enhanced AI Chat Interface") | |
gr.Markdown("Chat with state-of-the-art language models from Hugging Face") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot = gr.Chatbot( | |
label="Conversation", | |
bubble_full_width=False, | |
height=600, | |
avatar_images=("👤", "🤖"), | |
show_copy_button=True | |
) | |
with gr.Row(): | |
msg = gr.Textbox( | |
placeholder="Type your message here...", | |
show_label=False, | |
container=False, | |
scale=9 | |
) | |
submit_btn = gr.Button("Send", variant="primary", scale=1) | |
with gr.Accordion("Conversation Summary", open=False): | |
summary = gr.Textbox(label="Key points from this conversation", lines=3, interactive=False) | |
summary_btn = gr.Button("Generate Summary", variant="secondary") | |
with gr.Column(scale=1): | |
with gr.Accordion("Model Settings", open=True): | |
model_selection = gr.Dropdown( | |
models, | |
value=MODEL_ID, | |
label="Select Model", | |
info="Choose which AI model to chat with" | |
) | |
system_msg = gr.Textbox( | |
value=DEFAULT_SYSTEM_MSG, | |
label="System Message", | |
info="Instructions that define how the AI behaves", | |
lines=3 | |
) | |
max_tokens = gr.Slider( | |
minimum=1, | |
maximum=2048, | |
value=512, | |
step=1, | |
label="Max New Tokens", | |
info="Maximum length of generated response" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
temperature = gr.Slider( | |
minimum=0.1, | |
maximum=2.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature", | |
info="Higher = more creative, Lower = more focused" | |
) | |
with gr.Column(): | |
top_p = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p", | |
info="Controls randomness in token selection" | |
) | |
typing_effect = gr.Checkbox( | |
label="Enable Typing Animation", | |
value=True, | |
info="Show realistic typing animation" | |
) | |
with gr.Accordion("Tools", open=False): | |
clear_btn = gr.Button("Clear Conversation", variant="secondary") | |
export_btn = gr.Button("Export Chat History", variant="secondary") | |
chat_download = gr.File(label="Download", interactive=False, visible=False) | |
# Event handlers | |
msg_submit = msg.submit( | |
fn=respond, | |
inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p, model_selection, typing_effect], | |
outputs=[chatbot], | |
queue=True | |
) | |
submit_click = submit_btn.click( | |
fn=respond, | |
inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p, model_selection, typing_effect], | |
outputs=[chatbot], | |
queue=True | |
) | |
# Clear the input field after sending | |
msg_submit.then(lambda: "", None, msg) | |
submit_click.then(lambda: "", None, msg) | |
# Clear chat history | |
def clear_history(): | |
return None | |
clear_btn.click( | |
fn=clear_history, | |
inputs=[], | |
outputs=[chatbot] | |
) | |
# Export chat history | |
def export_history(history): | |
if not history: | |
return None | |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") | |
filename = f"chat_history_{timestamp}.txt" | |
with open(filename, "w") as f: | |
f.write("# Chat History\n\n") | |
f.write(f"Exported on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n") | |
for user_msg, ai_msg in history: | |
f.write(f"## User\n{user_msg}\n\n") | |
f.write(f"## AI\n{ai_msg}\n\n") | |
f.write("---\n\n") | |
return filename | |
export_btn.click( | |
fn=export_history, | |
inputs=[chatbot], | |
outputs=[chat_download], | |
queue=False | |
).then( | |
lambda: gr.update(visible=True), | |
None, | |
[chat_download] | |
) | |
# Generate conversation summary (simplified implementation) | |
def generate_summary(history): | |
if not history or len(history) < 2: | |
return "Not enough conversation to summarize yet." | |
# In a real application, you might want to send this to the model | |
# Here we're just creating a simple summary | |
topics = [] | |
for user_msg, _ in history: | |
if user_msg and len(user_msg.split()) > 3: # Simple heuristic | |
topics.append(user_msg.split()[0:3]) | |
if topics: | |
return f"This conversation covered {len(history)} exchanges about various topics." | |
else: | |
return "Brief conversation with no clear topics." | |
summary_btn.click( | |
fn=generate_summary, | |
inputs=[chatbot], | |
outputs=[summary] | |
) | |
return demo | |
# Create and launch the interface | |
demo = create_interface() | |
if __name__ == "__main__": | |
demo.launch(share=False, debug=False) | |