Files changed (1) hide show
  1. app.py +319 -32
app.py CHANGED
@@ -1,11 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -14,20 +108,25 @@ def respond(
14
  max_tokens,
15
  temperature,
16
  top_p,
 
 
17
  ):
 
 
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
 
 
 
 
28
  response = ""
29
-
30
- for message in client.chat_completion(
31
  messages,
32
  max_tokens=max_tokens,
33
  stream=True,
@@ -35,30 +134,218 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ # def respond(
11
+ # message,
12
+ # history: list[tuple[str, str]],
13
+ # system_message,
14
+ # max_tokens,
15
+ # temperature,
16
+ # top_p,
17
+ # ):
18
+ # messages = [{"role": "system", "content": system_message}]
19
+
20
+ # for val in history:
21
+ # if val[0]:
22
+ # messages.append({"role": "user", "content": val[0]})
23
+ # if val[1]:
24
+ # messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ # messages.append({"role": "user", "content": message})
27
+
28
+ # response = ""
29
+
30
+ # for message in client.chat_completion(
31
+ # messages,
32
+ # max_tokens=max_tokens,
33
+ # stream=True,
34
+ # temperature=temperature,
35
+ # top_p=top_p,
36
+ # ):
37
+ # token = message.choices[0].delta.content
38
+
39
+ # response += token
40
+ # yield response
41
+
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
+
67
+
68
+
69
+
70
+
71
+
72
  import gradio as gr
73
  from huggingface_hub import InferenceClient
74
+ import time
75
+ import random
76
+ from datetime import datetime
77
+
78
+ # Theme and styling constants
79
+ THEME = gr.themes.Soft(
80
+ primary_hue="indigo",
81
+ secondary_hue="blue",
82
+ neutral_hue="slate",
83
+ radius_size=gr.themes.sizes.radius_sm,
84
+ font=[gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
85
+ )
86
 
87
+ # Configuration
88
+ MODEL_ID = "HuggingFaceH4/zephyr-7b-beta"
89
+ DEFAULT_SYSTEM_MSG = "You are a helpful, friendly, and knowledgeable AI assistant."
 
90
 
91
+ # Initialize the client
92
+ client = InferenceClient(MODEL_ID)
93
+
94
+ def format_history(history):
95
+ """Helper function to format chat history for display"""
96
+ formatted = []
97
+ for user_msg, ai_msg in history:
98
+ if user_msg:
99
+ formatted.append({"role": "user", "content": user_msg})
100
+ if ai_msg:
101
+ formatted.append({"role": "assistant", "content": ai_msg})
102
+ return formatted
103
 
104
  def respond(
105
  message,
 
108
  max_tokens,
109
  temperature,
110
  top_p,
111
+ model_id,
112
+ typing_animation=True
113
  ):
114
+ """Generate response from the model with typing animation effect"""
115
+ # Format messages for the API
116
  messages = [{"role": "system", "content": system_message}]
 
117
  for val in history:
118
  if val[0]:
119
  messages.append({"role": "user", "content": val[0]})
120
  if val[1]:
121
  messages.append({"role": "assistant", "content": val[1]})
 
122
  messages.append({"role": "user", "content": message})
123
+
124
+ # Use the selected model
125
+ inference_client = InferenceClient(model_id)
126
+
127
+ # Generate response with typing animation
128
  response = ""
129
+ for message in inference_client.chat_completion(
 
130
  messages,
131
  max_tokens=max_tokens,
132
  stream=True,
 
134
  top_p=top_p,
135
  ):
136
  token = message.choices[0].delta.content
137
+ if token:
138
+ response += token
139
+ # If typing animation is enabled, add a small random delay
140
+ if typing_animation:
141
+ time.sleep(random.uniform(0.01, 0.03))
142
+ yield response
143
 
144
+ def create_interface():
145
+ """Create and configure the Gradio interface"""
146
+ # Available models dropdown
147
+ models = [
148
+ "HuggingFaceH4/zephyr-7b-beta",
149
+ "mistralai/Mistral-7B-Instruct-v0.2",
150
+ "meta-llama/Llama-2-7b-chat-hf",
151
+ "gpt2" # Fallback for quick testing
152
+ ]
153
+
154
+ # Custom CSS for better styling
155
+ css = """
156
+ .gradio-container {
157
+ min-height: 100vh;
158
+ }
159
+ .message-bubble {
160
+ padding: 10px 15px;
161
+ border-radius: 12px;
162
+ margin-bottom: 8px;
163
+ }
164
+ .user-bubble {
165
+ background-color: #e9f5ff;
166
+ margin-left: 20px;
167
+ }
168
+ .bot-bubble {
169
+ background-color: #f0f4f9;
170
+ margin-right: 20px;
171
+ }
172
+ .timestamp {
173
+ font-size: 0.7em;
174
+ color: #888;
175
+ margin-top: 2px;
176
+ }
177
+ """
178
+
179
+ with gr.Blocks(theme=THEME, css=css) as demo:
180
+ gr.Markdown("# 🤖 Enhanced AI Chat Interface")
181
+ gr.Markdown("Chat with state-of-the-art language models from Hugging Face")
182
+
183
+ with gr.Row():
184
+ with gr.Column(scale=3):
185
+ chatbot = gr.Chatbot(
186
+ label="Conversation",
187
+ bubble_full_width=False,
188
+ height=600,
189
+ avatar_images=("👤", "🤖"),
190
+ show_copy_button=True
191
+ )
192
+
193
+ with gr.Row():
194
+ msg = gr.Textbox(
195
+ placeholder="Type your message here...",
196
+ show_label=False,
197
+ container=False,
198
+ scale=9
199
+ )
200
+ submit_btn = gr.Button("Send", variant="primary", scale=1)
201
+
202
+ with gr.Accordion("Conversation Summary", open=False):
203
+ summary = gr.Textbox(label="Key points from this conversation", lines=3, interactive=False)
204
+ summary_btn = gr.Button("Generate Summary", variant="secondary")
205
+
206
+ with gr.Column(scale=1):
207
+ with gr.Accordion("Model Settings", open=True):
208
+ model_selection = gr.Dropdown(
209
+ models,
210
+ value=MODEL_ID,
211
+ label="Select Model",
212
+ info="Choose which AI model to chat with"
213
+ )
214
+
215
+ system_msg = gr.Textbox(
216
+ value=DEFAULT_SYSTEM_MSG,
217
+ label="System Message",
218
+ info="Instructions that define how the AI behaves",
219
+ lines=3
220
+ )
221
+
222
+ max_tokens = gr.Slider(
223
+ minimum=1,
224
+ maximum=2048,
225
+ value=512,
226
+ step=1,
227
+ label="Max New Tokens",
228
+ info="Maximum length of generated response"
229
+ )
230
+
231
+ with gr.Row():
232
+ with gr.Column():
233
+ temperature = gr.Slider(
234
+ minimum=0.1,
235
+ maximum=2.0,
236
+ value=0.7,
237
+ step=0.1,
238
+ label="Temperature",
239
+ info="Higher = more creative, Lower = more focused"
240
+ )
241
+
242
+ with gr.Column():
243
+ top_p = gr.Slider(
244
+ minimum=0.1,
245
+ maximum=1.0,
246
+ value=0.95,
247
+ step=0.05,
248
+ label="Top-p",
249
+ info="Controls randomness in token selection"
250
+ )
251
+
252
+ typing_effect = gr.Checkbox(
253
+ label="Enable Typing Animation",
254
+ value=True,
255
+ info="Show realistic typing animation"
256
+ )
257
+
258
+ with gr.Accordion("Tools", open=False):
259
+ clear_btn = gr.Button("Clear Conversation", variant="secondary")
260
+ export_btn = gr.Button("Export Chat History", variant="secondary")
261
+ chat_download = gr.File(label="Download", interactive=False, visible=False)
262
+
263
+ # Event handlers
264
+ msg_submit = msg.submit(
265
+ fn=respond,
266
+ inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p, model_selection, typing_effect],
267
+ outputs=[chatbot],
268
+ queue=True
269
+ )
270
+
271
+ submit_click = submit_btn.click(
272
+ fn=respond,
273
+ inputs=[msg, chatbot, system_msg, max_tokens, temperature, top_p, model_selection, typing_effect],
274
+ outputs=[chatbot],
275
+ queue=True
276
+ )
277
+
278
+ # Clear the input field after sending
279
+ msg_submit.then(lambda: "", None, msg)
280
+ submit_click.then(lambda: "", None, msg)
281
+
282
+ # Clear chat history
283
+ def clear_history():
284
+ return None
285
+
286
+ clear_btn.click(
287
+ fn=clear_history,
288
+ inputs=[],
289
+ outputs=[chatbot]
290
+ )
291
+
292
+ # Export chat history
293
+ def export_history(history):
294
+ if not history:
295
+ return None
296
+
297
+ timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
298
+ filename = f"chat_history_{timestamp}.txt"
299
+
300
+ with open(filename, "w") as f:
301
+ f.write("# Chat History\n\n")
302
+ f.write(f"Exported on: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n")
303
+
304
+ for user_msg, ai_msg in history:
305
+ f.write(f"## User\n{user_msg}\n\n")
306
+ f.write(f"## AI\n{ai_msg}\n\n")
307
+ f.write("---\n\n")
308
+
309
+ return filename
310
+
311
+ export_btn.click(
312
+ fn=export_history,
313
+ inputs=[chatbot],
314
+ outputs=[chat_download],
315
+ queue=False
316
+ ).then(
317
+ lambda: gr.update(visible=True),
318
+ None,
319
+ [chat_download]
320
+ )
321
+
322
+ # Generate conversation summary (simplified implementation)
323
+ def generate_summary(history):
324
+ if not history or len(history) < 2:
325
+ return "Not enough conversation to summarize yet."
326
+
327
+ # In a real application, you might want to send this to the model
328
+ # Here we're just creating a simple summary
329
+ topics = []
330
+ for user_msg, _ in history:
331
+ if user_msg and len(user_msg.split()) > 3: # Simple heuristic
332
+ topics.append(user_msg.split()[0:3])
333
+
334
+ if topics:
335
+ return f"This conversation covered {len(history)} exchanges about various topics."
336
+ else:
337
+ return "Brief conversation with no clear topics."
338
+
339
+ summary_btn.click(
340
+ fn=generate_summary,
341
+ inputs=[chatbot],
342
+ outputs=[summary]
343
+ )
344
+
345
+ return demo
346
 
347
+ # Create and launch the interface
348
+ demo = create_interface()
349
 
350
  if __name__ == "__main__":
351
+ demo.launch(share=False, debug=False)