File size: 20,385 Bytes
6c4f135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
import os

from transformers import CLIPTokenizer
import comfy.ops
import torch
import traceback
import zipfile
from . import model_management
import comfy.clip_model
import json

def gen_empty_tokens(special_tokens, length):
    start_token = special_tokens.get("start", None)
    end_token = special_tokens.get("end", None)
    pad_token = special_tokens.get("pad")
    output = []
    if start_token is not None:
        output.append(start_token)
    if end_token is not None:
        output.append(end_token)
    output += [pad_token] * (length - len(output))
    return output

class ClipTokenWeightEncoder:
    def encode_token_weights(self, token_weight_pairs):
        to_encode = list()
        max_token_len = 0
        has_weights = False
        for x in token_weight_pairs:
            tokens = list(map(lambda a: a[0], x))
            max_token_len = max(len(tokens), max_token_len)
            has_weights = has_weights or not all(map(lambda a: a[1] == 1.0, x))
            to_encode.append(tokens)

        sections = len(to_encode)
        if has_weights or sections == 0:
            to_encode.append(gen_empty_tokens(self.special_tokens, max_token_len))

        out, pooled = self.encode(to_encode)
        if pooled is not None:
            first_pooled = pooled[0:1].to(model_management.intermediate_device())
        else:
            first_pooled = pooled

        output = []
        for k in range(0, sections):
            z = out[k:k+1]
            if has_weights:
                z_empty = out[-1]
                for i in range(len(z)):
                    for j in range(len(z[i])):
                        weight = token_weight_pairs[k][j][1]
                        if weight != 1.0:
                            z[i][j] = (z[i][j] - z_empty[j]) * weight + z_empty[j]
            output.append(z)

        if (len(output) == 0):
            return out[-1:].to(model_management.intermediate_device()), first_pooled
        return torch.cat(output, dim=-2).to(model_management.intermediate_device()), first_pooled

class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
    """Uses the CLIP transformer encoder for text (from huggingface)"""
    LAYERS = [
        "last",
        "pooled",
        "hidden"
    ]
    def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77,
                 freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
                 special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False):  # clip-vit-base-patch32
        super().__init__()
        assert layer in self.LAYERS

        if textmodel_json_config is None:
            textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")

        with open(textmodel_json_config) as f:
            config = json.load(f)

        self.transformer = model_class(config, dtype, device, comfy.ops.manual_cast)
        self.num_layers = self.transformer.num_layers

        self.max_length = max_length
        if freeze:
            self.freeze()
        self.layer = layer
        self.layer_idx = None
        self.special_tokens = special_tokens
        self.text_projection = torch.nn.Parameter(torch.eye(self.transformer.get_input_embeddings().weight.shape[1]))
        self.logit_scale = torch.nn.Parameter(torch.tensor(4.6055))
        self.enable_attention_masks = enable_attention_masks

        self.layer_norm_hidden_state = layer_norm_hidden_state
        if layer == "hidden":
            assert layer_idx is not None
            assert abs(layer_idx) < self.num_layers
            self.clip_layer(layer_idx)
        self.layer_default = (self.layer, self.layer_idx)

    def freeze(self):
        self.transformer = self.transformer.eval()
        #self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def clip_layer(self, layer_idx):
        if abs(layer_idx) > self.num_layers:
            self.layer = "last"
        else:
            self.layer = "hidden"
            self.layer_idx = layer_idx

    def reset_clip_layer(self):
        self.layer = self.layer_default[0]
        self.layer_idx = self.layer_default[1]

    def set_up_textual_embeddings(self, tokens, current_embeds):
        out_tokens = []
        next_new_token = token_dict_size = current_embeds.weight.shape[0] - 1
        embedding_weights = []

        for x in tokens:
            tokens_temp = []
            for y in x:
                if isinstance(y, int):
                    if y == token_dict_size: #EOS token
                        y = -1
                    tokens_temp += [y]
                else:
                    if y.shape[0] == current_embeds.weight.shape[1]:
                        embedding_weights += [y]
                        tokens_temp += [next_new_token]
                        next_new_token += 1
                    else:
                        print("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored", y.shape[0], current_embeds.weight.shape[1])
            while len(tokens_temp) < len(x):
                tokens_temp += [self.special_tokens["pad"]]
            out_tokens += [tokens_temp]

        n = token_dict_size
        if len(embedding_weights) > 0:
            new_embedding = torch.nn.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
            new_embedding.weight[:token_dict_size] = current_embeds.weight[:-1]
            for x in embedding_weights:
                new_embedding.weight[n] = x
                n += 1
            new_embedding.weight[n] = current_embeds.weight[-1] #EOS embedding
            self.transformer.set_input_embeddings(new_embedding)

        processed_tokens = []
        for x in out_tokens:
            processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one

        return processed_tokens

    def forward(self, tokens):
        backup_embeds = self.transformer.get_input_embeddings()
        device = backup_embeds.weight.device
        tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
        tokens = torch.LongTensor(tokens).to(device)

        attention_mask = None
        if self.enable_attention_masks:
            attention_mask = torch.zeros_like(tokens)
            max_token = self.transformer.get_input_embeddings().weight.shape[0] - 1
            for x in range(attention_mask.shape[0]):
                for y in range(attention_mask.shape[1]):
                    attention_mask[x, y] = 1
                    if tokens[x, y] == max_token:
                        break

        outputs = self.transformer(tokens, attention_mask, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state)
        self.transformer.set_input_embeddings(backup_embeds)

        if self.layer == "last":
            z = outputs[0]
        else:
            z = outputs[1]

        if outputs[2] is not None:
            pooled_output = outputs[2].float()
        else:
            pooled_output = None

        if self.text_projection is not None and pooled_output is not None:
            pooled_output = pooled_output.float().to(self.text_projection.device) @ self.text_projection.float()
        return z.float(), pooled_output

    def encode(self, tokens):
        return self(tokens)

    def load_sd(self, sd):
        if "text_projection" in sd:
            self.text_projection[:] = sd.pop("text_projection")
        if "text_projection.weight" in sd:
            self.text_projection[:] = sd.pop("text_projection.weight").transpose(0, 1)
        return self.transformer.load_state_dict(sd, strict=False)

def parse_parentheses(string):
    result = []
    current_item = ""
    nesting_level = 0
    for char in string:
        if char == "(":
            if nesting_level == 0:
                if current_item:
                    result.append(current_item)
                    current_item = "("
                else:
                    current_item = "("
            else:
                current_item += char
            nesting_level += 1
        elif char == ")":
            nesting_level -= 1
            if nesting_level == 0:
                result.append(current_item + ")")
                current_item = ""
            else:
                current_item += char
        else:
            current_item += char
    if current_item:
        result.append(current_item)
    return result

def token_weights(string, current_weight):
    a = parse_parentheses(string)
    out = []
    for x in a:
        weight = current_weight
        if len(x) >= 2 and x[-1] == ')' and x[0] == '(':
            x = x[1:-1]
            xx = x.rfind(":")
            weight *= 1.1
            if xx > 0:
                try:
                    weight = float(x[xx+1:])
                    x = x[:xx]
                except:
                    pass
            out += token_weights(x, weight)
        else:
            out += [(x, current_weight)]
    return out

def escape_important(text):
    text = text.replace("\\)", "\0\1")
    text = text.replace("\\(", "\0\2")
    return text

def unescape_important(text):
    text = text.replace("\0\1", ")")
    text = text.replace("\0\2", "(")
    return text

def safe_load_embed_zip(embed_path):
    with zipfile.ZipFile(embed_path) as myzip:
        names = list(filter(lambda a: "data/" in a, myzip.namelist()))
        names.reverse()
        for n in names:
            with myzip.open(n) as myfile:
                data = myfile.read()
                number = len(data) // 4
                length_embed = 1024 #sd2.x
                if number < 768:
                    continue
                if number % 768 == 0:
                    length_embed = 768 #sd1.x
                num_embeds = number // length_embed
                embed = torch.frombuffer(data, dtype=torch.float)
                out = embed.reshape((num_embeds, length_embed)).clone()
                del embed
                return out

def expand_directory_list(directories):
    dirs = set()
    for x in directories:
        dirs.add(x)
        for root, subdir, file in os.walk(x, followlinks=True):
            dirs.add(root)
    return list(dirs)

def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
    if isinstance(embedding_directory, str):
        embedding_directory = [embedding_directory]

    embedding_directory = expand_directory_list(embedding_directory)

    valid_file = None
    for embed_dir in embedding_directory:
        embed_path = os.path.abspath(os.path.join(embed_dir, embedding_name))
        embed_dir = os.path.abspath(embed_dir)
        try:
            if os.path.commonpath((embed_dir, embed_path)) != embed_dir:
                continue
        except:
            continue
        if not os.path.isfile(embed_path):
            extensions = ['.safetensors', '.pt', '.bin']
            for x in extensions:
                t = embed_path + x
                if os.path.isfile(t):
                    valid_file = t
                    break
        else:
            valid_file = embed_path
        if valid_file is not None:
            break

    if valid_file is None:
        return None

    embed_path = valid_file

    embed_out = None

    try:
        if embed_path.lower().endswith(".safetensors"):
            import safetensors.torch
            embed = safetensors.torch.load_file(embed_path, device="cpu")
        else:
            if 'weights_only' in torch.load.__code__.co_varnames:
                try:
                    embed = torch.load(embed_path, weights_only=True, map_location="cpu")
                except:
                    embed_out = safe_load_embed_zip(embed_path)
            else:
                embed = torch.load(embed_path, map_location="cpu")
    except Exception as e:
        print(traceback.format_exc())
        print()
        print("error loading embedding, skipping loading:", embedding_name)
        return None

    if embed_out is None:
        if 'string_to_param' in embed:
            values = embed['string_to_param'].values()
            embed_out = next(iter(values))
        elif isinstance(embed, list):
            out_list = []
            for x in range(len(embed)):
                for k in embed[x]:
                    t = embed[x][k]
                    if t.shape[-1] != embedding_size:
                        continue
                    out_list.append(t.reshape(-1, t.shape[-1]))
            embed_out = torch.cat(out_list, dim=0)
        elif embed_key is not None and embed_key in embed:
            embed_out = embed[embed_key]
        else:
            values = embed.values()
            embed_out = next(iter(values))
    return embed_out

class SDTokenizer:
    def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, pad_to_max_length=True):
        if tokenizer_path is None:
            tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
        self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path)
        self.max_length = max_length

        empty = self.tokenizer('')["input_ids"]
        if has_start_token:
            self.tokens_start = 1
            self.start_token = empty[0]
            self.end_token = empty[1]
        else:
            self.tokens_start = 0
            self.start_token = None
            self.end_token = empty[0]
        self.pad_with_end = pad_with_end
        self.pad_to_max_length = pad_to_max_length

        vocab = self.tokenizer.get_vocab()
        self.inv_vocab = {v: k for k, v in vocab.items()}
        self.embedding_directory = embedding_directory
        self.max_word_length = 8
        self.embedding_identifier = "embedding:"
        self.embedding_size = embedding_size
        self.embedding_key = embedding_key

    def _try_get_embedding(self, embedding_name:str):
        '''
        Takes a potential embedding name and tries to retrieve it.
        Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
        '''
        embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
        if embed is None:
            stripped = embedding_name.strip(',')
            if len(stripped) < len(embedding_name):
                embed = load_embed(stripped, self.embedding_directory, self.embedding_size, self.embedding_key)
                return (embed, embedding_name[len(stripped):])
        return (embed, "")


    def tokenize_with_weights(self, text:str, return_word_ids=False):
        '''
        Takes a prompt and converts it to a list of (token, weight, word id) elements.
        Tokens can both be integer tokens and pre computed CLIP tensors.
        Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
        Returned list has the dimensions NxM where M is the input size of CLIP
        '''
        if self.pad_with_end:
            pad_token = self.end_token
        else:
            pad_token = 0

        text = escape_important(text)
        parsed_weights = token_weights(text, 1.0)

        #tokenize words
        tokens = []
        for weighted_segment, weight in parsed_weights:
            to_tokenize = unescape_important(weighted_segment).replace("\n", " ").split(' ')
            to_tokenize = [x for x in to_tokenize if x != ""]
            for word in to_tokenize:
                #if we find an embedding, deal with the embedding
                if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
                    embedding_name = word[len(self.embedding_identifier):].strip('\n')
                    embed, leftover = self._try_get_embedding(embedding_name)
                    if embed is None:
                        print(f"warning, embedding:{embedding_name} does not exist, ignoring")
                    else:
                        if len(embed.shape) == 1:
                            tokens.append([(embed, weight)])
                        else:
                            tokens.append([(embed[x], weight) for x in range(embed.shape[0])])
                    #if we accidentally have leftover text, continue parsing using leftover, else move on to next word
                    if leftover != "":
                        word = leftover
                    else:
                        continue
                #parse word
                tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:-1]])

        #reshape token array to CLIP input size
        batched_tokens = []
        batch = []
        if self.start_token is not None:
            batch.append((self.start_token, 1.0, 0))
        batched_tokens.append(batch)
        for i, t_group in enumerate(tokens):
            #determine if we're going to try and keep the tokens in a single batch
            is_large = len(t_group) >= self.max_word_length

            while len(t_group) > 0:
                if len(t_group) + len(batch) > self.max_length - 1:
                    remaining_length = self.max_length - len(batch) - 1
                    #break word in two and add end token
                    if is_large:
                        batch.extend([(t,w,i+1) for t,w in t_group[:remaining_length]])
                        batch.append((self.end_token, 1.0, 0))
                        t_group = t_group[remaining_length:]
                    #add end token and pad
                    else:
                        batch.append((self.end_token, 1.0, 0))
                        if self.pad_to_max_length:
                            batch.extend([(pad_token, 1.0, 0)] * (remaining_length))
                    #start new batch
                    batch = []
                    if self.start_token is not None:
                        batch.append((self.start_token, 1.0, 0))
                    batched_tokens.append(batch)
                else:
                    batch.extend([(t,w,i+1) for t,w in t_group])
                    t_group = []

        #fill last batch
        batch.append((self.end_token, 1.0, 0))
        if self.pad_to_max_length:
            batch.extend([(pad_token, 1.0, 0)] * (self.max_length - len(batch)))

        if not return_word_ids:
            batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]

        return batched_tokens


    def untokenize(self, token_weight_pair):
        return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))


class SD1Tokenizer:
    def __init__(self, embedding_directory=None, clip_name="l", tokenizer=SDTokenizer):
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        setattr(self, self.clip, tokenizer(embedding_directory=embedding_directory))

    def tokenize_with_weights(self, text:str, return_word_ids=False):
        out = {}
        out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
        return out

    def untokenize(self, token_weight_pair):
        return getattr(self, self.clip).untokenize(token_weight_pair)


class SD1ClipModel(torch.nn.Module):
    def __init__(self, device="cpu", dtype=None, clip_name="l", clip_model=SDClipModel, **kwargs):
        super().__init__()
        self.clip_name = clip_name
        self.clip = "clip_{}".format(self.clip_name)
        setattr(self, self.clip, clip_model(device=device, dtype=dtype, **kwargs))

    def clip_layer(self, layer_idx):
        getattr(self, self.clip).clip_layer(layer_idx)

    def reset_clip_layer(self):
        getattr(self, self.clip).reset_clip_layer()

    def encode_token_weights(self, token_weight_pairs):
        token_weight_pairs = token_weight_pairs[self.clip_name]
        out, pooled = getattr(self, self.clip).encode_token_weights(token_weight_pairs)
        return out, pooled

    def load_sd(self, sd):
        return getattr(self, self.clip).load_sd(sd)