Spaces:
Runtime error
Runtime error
File size: 13,350 Bytes
800ade2 f9e72d0 30f2bef 2773f58 f9e72d0 2773f58 b0cee6d 800ade2 8507790 f9e72d0 ae2c89d f67adcd e9ecd38 f67adcd ac0b0ba f67adcd 8fc7477 f9e72d0 8fc7477 f2216d5 8fc7477 4cfb376 d38645c 4cfb376 d38645c 4cfb376 70fa6be d38645c 70fa6be ce3f2b4 70fa6be 50668be 8507790 b0cee6d 70fa6be 8fc7477 4cfb376 8fc7477 75e7686 8fc7477 08fb2c9 000d979 4cfb376 70fa6be 58d8b0b 4cfb376 70fa6be d38645c bb45c2d 4cfb376 ac0b0ba f67adcd ba3183a ae2c89d 9308288 8507790 9308288 4a35755 6dc09e2 f67adcd ba3183a 4cfb376 58d8b0b 4cfb376 70fa6be 581ffca 70fa6be 581ffca 70fa6be f2216d5 70fa6be f2216d5 70fa6be f2216d5 dc9674b 96f8aa7 70fa6be 22c721b 70fa6be 75e7686 332e841 e677165 2c592a4 1d3b03f 85d5108 c225b4e 15c5816 f49f244 d38645c 75e7686 ba3183a 70fa6be bb45c2d 70fa6be 56f3b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import torch
import openai
import requests
import gradio as gr
import transformers
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
#from peft import PeftModel
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
## CoT prompts
def _add_markup(table):
try:
parts = [p.strip() for p in table.splitlines(keepends=False)]
if parts[0].startswith('TITLE'):
result = f"Title: {parts[0].split(' | ')[1].strip()}\n"
rows = parts[1:]
else:
result = ''
rows = parts
prefixes = ['Header: '] + [f'Row {i+1}: ' for i in range(len(rows) - 1)]
return result + '\n'.join(prefix + row for prefix, row in zip(prefixes, rows))
except:
# just use the raw table if parsing fails
return table
_TABLE = """Year | Democrats | Republicans | Independents
2004 | 68.1% | 45.0% | 53.0%
2006 | 58.0% | 42.0% | 53.0%
2007 | 59.0% | 38.0% | 45.0%
2009 | 72.0% | 49.0% | 60.0%
2011 | 71.0% | 51.2% | 58.0%
2012 | 70.0% | 48.0% | 53.0%
2013 | 72.0% | 41.0% | 60.0%"""
_INSTRUCTION = 'Read the table below to answer the following questions.'
_TEMPLATE = f"""First read an example then the complete question for the second table.
------------
{_INSTRUCTION}
{_add_markup(_TABLE)}
Q: In which year republicans have the lowest favor rate?
A: Let's find the column of republicans. Then let's extract the favor rates, they [45.0, 42.0, 38.0, 49.0, 51.2, 48.0, 41.0]. The smallest number is 38.0, that's Row 3. Row 3 is year 2007. The answer is 2007.
Q: What is the sum of Democrats' favor rates of 2004, 2012, and 2013?
A: Let's find the rows of years 2004, 2012, and 2013. We find Row 1, 6, 7. The favor dates of Demoncrats on that 3 rows are 68.1, 70.0, and 72.0. 68.1+70.0+72=210.1. The answer is 210.1.
Q: By how many points do Independents surpass Republicans in the year of 2011?
A: Let's find the row with year = 2011. We find Row 5. We extract Independents and Republicans' numbers. They are 58.0 and 51.2. 58.0-51.2=6.8. The answer is 6.8.
Q: Which group has the overall worst performance?
A: Let's sample a couple of years. In Row 1, year 2004, we find Republicans having the lowest favor rate 45.0 (since 45.0<68.1, 45.0<53.0). In year 2006, Row 2, we find Republicans having the lowest favor rate 42.0 (42.0<58.0, 42.0<53.0). The trend continues to other years. The answer is Republicans.
Q: Which party has the second highest favor rates in 2007?
A: Let's find the row of year 2007, that's Row 3. Let's extract the numbers on Row 3: [59.0, 38.0, 45.0]. 45.0 is the second highest. 45.0 is the number of Independents. The answer is Independents.
{_INSTRUCTION}"""
## alpaca-lora
# assert (
# "LlamaTokenizer" in transformers._import_structure["models.llama"]
# ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
# from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
# tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
# BASE_MODEL = "decapoda-research/llama-7b-hf"
# LORA_WEIGHTS = "tloen/alpaca-lora-7b"
# if device == "cuda":
# model = LlamaForCausalLM.from_pretrained(
# BASE_MODEL,
# load_in_8bit=False,
# torch_dtype=torch.float16,
# device_map="auto",
# )
# model = PeftModel.from_pretrained(
# model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
# )
# elif device == "mps":
# model = LlamaForCausalLM.from_pretrained(
# BASE_MODEL,
# device_map={"": device},
# torch_dtype=torch.float16,
# )
# model = PeftModel.from_pretrained(
# model,
# LORA_WEIGHTS,
# device_map={"": device},
# torch_dtype=torch.float16,
# )
# else:
# model = LlamaForCausalLM.from_pretrained(
# BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
# )
# model = PeftModel.from_pretrained(
# model,
# LORA_WEIGHTS,
# device_map={"": device},
# )
# if device != "cpu":
# model.half()
# model.eval()
# if torch.__version__ >= "2":
# model = torch.compile(model)
## FLAN-UL2
HF_TOKEN = os.environ.get("API_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/google/flan-ul2"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
## OpenAI models
openai.api_key = os.environ.get("OPENAI_TOKEN", None)
def set_openai_api_key(api_key):
if api_key and api_key.startswith("sk-") and len(api_key) > 50:
openai.api_key = api_key
def get_response_from_openai(prompt, model="gpt-3.5-turbo", max_output_tokens=256):
messages = [{"role": "assistant", "content": prompt}]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=0.7,
max_tokens=max_output_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
)
ret = response.choices[0].message['content']
return ret
## deplot models
model_deplot = Pix2StructForConditionalGeneration.from_pretrained("google/deplot", torch_dtype=torch.bfloat16)
if device == "cuda":
model_deplot = model_deplot.to(0)
processor_deplot = Pix2StructProcessor.from_pretrained("google/deplot")
def evaluate(
table,
question,
llm="alpaca-lora",
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
**kwargs,
):
prompt_0shot = _INSTRUCTION + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:"
prompt = _TEMPLATE + "\n" + _add_markup(table) + "\n" + "Q: " + question + "\n" + "A:"
if llm == "alpaca-lora":
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
elif llm == "flan-ul2":
output = query({"inputs": prompt_0shot})[0]["generated_text"]
elif llm == "gpt-3.5-turbo":
try:
output = get_response_from_openai(prompt_0shot)
except:
output = "<Remember to input your OpenAI API key ☺>"
else:
RuntimeError(f"No such LLM: {llm}")
return output
def process_document(image, question, llm):
# image = Image.open(image)
inputs = processor_deplot(images=image, text="Generate the underlying data table for the figure below:", return_tensors="pt").to(torch.bfloat16)
if device == "cuda":
inputs = inputs.to(0)
predictions = model_deplot.generate(**inputs, max_new_tokens=512)
table = processor_deplot.decode(predictions[0], skip_special_tokens=True).replace("<0x0A>", "\n")
# send prompt+table to LLM
res = evaluate(table, question, llm=llm)
if llm == "alpaca-lora":
return [table, res.split("A:")[-1]]
else:
return [table, res]
# theme = gr.themes.Monochrome(
# primary_hue="indigo",
# secondary_hue="blue",
# neutral_hue="slate",
# radius_size=gr.themes.sizes.radius_sm,
# font=[gr.themes.GoogleFont("Open Sans"), "ui-sans-serif", "system-ui", "sans-serif"],
# )
with gr.Blocks(theme="gradio/soft") as demo:
with gr.Column():
# gr.Markdown(
# """<h1><center>DePlot+LLM: Multimodal chain-of-thought reasoning on plots</center></h1>
# <p>
# This is a demo of DePlot+LLM for QA and summarisation. <a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot</a> is an image-to-text model that converts plots and charts into a textual sequence. The sequence then is used to prompt LLM for chain-of-thought reasoning. The current underlying LLMs are <a href='https://huggingface.co/spaces/tloen/alpaca-lora' target='_blank'>alpaca-lora</a>, <a href='https://huggingface.co/google/flan-ul2' target='_blank'>flan-ul2</a>, and <a href='https://openai.com/blog/chatgpt' target='_blank'>gpt-3.5-turbo</a>. To use it, simply upload your image and type a question or instruction and click 'submit', or click one of the examples to load them. Read more at the links below.
# </p>
# """
# )
gr.Markdown(
"""<h1><center>DePlot+LLM: Multimodal chain-of-thought reasoning on plots</center></h1>
<p>
This is a demo of DePlot+LLM for QA and summarisation. <a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot</a> is an image-to-text model that converts plots and charts into a textual sequence. The sequence then is used to prompt LLM for chain-of-thought reasoning. The current underlying LLMs are <a href='https://huggingface.co/google/flan-ul2' target='_blank'>flan-ul2</a> and <a href='https://openai.com/blog/chatgpt' target='_blank'>gpt-3.5-turbo</a>. To use it, simply upload your image and type a question or instruction and click 'submit', or click one of the examples to load them. Read more at the links below.
</p>
"""
)
with gr.Row():
with gr.Column(scale=2):
input_image = gr.Image(label="Input Image", type="pil", interactive=True)
#input_image.style(height=512, width=512)
instruction = gr.Textbox(placeholder="Enter your instruction/question...", label="Question/Instruction")
#llm = gr.Dropdown(["alpaca-lora", "flan-ul2", "gpt-3.5-turbo"], label="LLM")
llm = gr.Dropdown(["flan-ul2", "gpt-3.5-turbo"], label="LLM")
openai_api_key_textbox = gr.Textbox(value='',
placeholder="Paste your OpenAI API key (sk-...) and hit Enter (if using OpenAI models, otherwise leave empty)",
show_label=False, lines=1, type='password')
submit = gr.Button("Submit", variant="primary")
with gr.Column(scale=2):
with gr.Accordion("Show intermediate table", open=False):
output_table = gr.Textbox(lines=8, label="Intermediate Table")
output_text = gr.Textbox(lines=8, label="Output")
gr.Examples(
examples=[
#["deplot_case_study_6.png", "Rank the four methods according to average model performances. By how much does deplot outperform the second strongest approach on average across the two sets? Show the computation.", "gpt-3.5-turbo"],
["deplot_case_study_4.png", "What are the acceptance rates? And how does the acceptance change over the years?", "gpt-3.5-turbo"],
#["deplot_case_study_m1.png", "Summarise the chart for me please.", "gpt-3.5-turbo"],
#["deplot_case_study_m1.png", "What is the sum of numbers of Indonesia and Ireland? Remember to think step by step.", "alpaca-lora"],
#["deplot_case_study_3.png", "By how much did China's growth rate drop? Think step by step.", "alpaca-lora"],
#["deplot_case_study_4.png", "How many papers are submitted in 2020?", "flan-ul2"],
#["deplot_case_study_5.png", "Which sales channel has the second highest portion?", "flan-ul2"],
#["deplot_case_study_x2.png", "Summarise the chart for me please.", "alpaca-lora"],
#["deplot_case_study_4.png", "How many papers are submitted in 2020?", "alpaca-lora"],
#["deplot_case_study_m1.png", "Summarise the chart for me please.", "alpaca-lora"],
#["deplot_case_study_4.png", "acceptance rate = # accepted / #submitted . What is the acceptance rate of 2010?", "flan-ul2"],
#["deplot_case_study_m1.png", "Summarise the chart for me please.", "flan-ul2"],
],
cache_examples=True,
inputs=[input_image, instruction, llm],
outputs=[output_table, output_text],
fn=process_document
)
gr.Markdown(
"""<p style='text-align: center'><a href='https://arxiv.org/abs/2212.10505' target='_blank'>DePlot: One-shot visual language reasoning by plot-to-table translation</a></p>"""
)
openai.api_key = ""
openai_api_key_textbox.change(set_openai_api_key,
inputs=[openai_api_key_textbox],
outputs=[])
openai_api_key_textbox.submit(set_openai_api_key,
inputs=[openai_api_key_textbox],
outputs=[])
submit.click(process_document, inputs=[input_image, instruction, llm], outputs=[output_table, output_text])
instruction.submit(
process_document, inputs=[input_image, instruction, llm], outputs=[output_table, output_text]
)
demo.queue(concurrency_count=1).launch() |