Spaces:
Runtime error
Runtime error
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# model_name = "flax-community/gpt-code-clippy-1.3B-apps-alldata" | |
model_name = "flax-community/gpt-code-clippy-125M-apps-alldata" | |
def get_model(): | |
return AutoModelForCausalLM.from_pretrained(model_name) | |
def get_tokenizer(): | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
tokenizer.pad_token = tokenizer.eos_token | |
return tokenizer | |
def format_input(question, starter_code=""): | |
answer_type = "\nUse Call-Based format\n" if starter_code else \ | |
"\nUse Standard Input format\n" | |
return f"\nQUESTION:\n{question}\n{starter_code}\n{answer_type}\nANSWER:\n" | |
def generate_solution(model, tokenizer, question, starter_code="", temperature=1.0, num_beams=1): | |
prompt = format_input(question, starter_code) | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
start = len(input_ids[0]) | |
output = model.generate( | |
input_ids, | |
max_length=start + 150, | |
do_sample=True, | |
top_p=0.95, | |
pad_token_id=tokenizer.pad_token_id, | |
early_stopping=True, | |
temperature=temperature, | |
num_beams=int(num_beams), | |
no_repeat_ngram_size=None, | |
repetition_penalty=None, | |
num_return_sequences=None, | |
) | |
return tokenizer.decode(output[0][start:], skip_special_tokens=True).strip() | |
_EXAMPLES = [ | |
[ | |
""" | |
Given a 2D list of size `m * n`. Your task is to find the sum of minimum value in each row. | |
For Example: | |
```python | |
[ | |
[1, 2, 3, 4, 5], # minimum value of row is 1 | |
[5, 6, 7, 8, 9], # minimum value of row is 5 | |
[20, 21, 34, 56, 100] # minimum value of row is 20 | |
] | |
``` | |
So, the function should return `26` because sum of minimums is as `1 + 5 + 20 = 26` | |
""", | |
"", | |
0.8, | |
], | |
[ | |
""" | |
# Personalized greeting | |
Create a function that gives a personalized greeting. This function takes two parameters: `name` and `owner`. | |
""", | |
""" | |
Use conditionals to return the proper message: | |
case| return | |
--- | --- | |
name equals owner | 'Hello boss' | |
otherwise | 'Hello guest' | |
def greet(name, owner): | |
""", | |
0.8, | |
], | |
] | |
def run(): | |
st.set_page_config( | |
page_title="Code Clippy Problem Solver" | |
) | |
# sidebar | |
st.sidebar.title("Code Clippy") | |
st.sidebar.image( | |
"https://raw.githubusercontent.com/ncoop57/gpt-code-clippy/camera-ready/code_clippy_logo.jpg", | |
caption="(c) awesome Aimee Trevett", | |
) | |
st.sidebar.markdown("[Github](https://github.com/ncoop57/gpt-code-clippy)") | |
st.sidebar.markdown("### Controls:") | |
temperature = st.sidebar.slider( | |
"Temperature", | |
min_value=0.5, | |
max_value=1.5, | |
value=0.8, | |
step=0.1, | |
) | |
num_beams = st.sidebar.slider( | |
"Num beams", | |
min_value=1, | |
max_value=4, | |
step=1, | |
) | |
# main body | |
model = get_model() | |
tokenizer = get_tokenizer() | |
question = st.text_input( | |
"Problem: ", | |
value="A function that can greet user by name. Given a name it should say hello to user.", | |
help="Text description of the coding problem to be solved", | |
) | |
starter_code = st.text_input( | |
"Started code: ", | |
value="def greet(name):", | |
help="Optional starter code" | |
) | |
submit_button = st.button("Solve") | |
if submit_button: | |
generate_solution(model, tokenizer, question, starter_code, temperature, num_beams) | |
st.code(tmp, language="python") | |
if __name__=="__main__": | |
run() |