File size: 20,647 Bytes
6197b2f
972bc8d
6197b2f
 
 
 
 
 
 
 
 
 
 
 
972bc8d
6197b2f
 
64d99b2
6197b2f
772415c
6197b2f
 
 
 
972bc8d
 
6f1f2d9
6197b2f
 
 
 
 
972bc8d
 
 
a6252c9
972bc8d
 
 
a6252c9
 
 
972bc8d
a6252c9
972bc8d
 
a6252c9
64d99b2
1023afa
6197b2f
eb24dbc
 
6197b2f
 
 
972bc8d
6197b2f
972bc8d
8654dc9
6197b2f
 
 
 
972bc8d
 
 
 
 
6197b2f
 
 
 
972bc8d
6197b2f
 
 
 
 
 
 
 
 
 
8654dc9
6197b2f
8654dc9
6197b2f
 
 
972bc8d
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
972bc8d
6197b2f
 
972bc8d
6197b2f
 
 
 
 
 
180ed1e
6197b2f
 
 
180ed1e
 
 
 
6197b2f
972bc8d
6197b2f
 
972bc8d
 
 
 
 
 
6197b2f
 
6f1f2d9
 
 
 
 
6197b2f
6f1f2d9
 
6197b2f
972bc8d
6197b2f
 
972bc8d
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
972bc8d
6197b2f
 
 
 
 
 
972bc8d
6197b2f
 
 
 
 
972bc8d
6197b2f
 
972bc8d
6197b2f
 
 
180ed1e
6197b2f
 
 
180ed1e
 
 
 
6197b2f
972bc8d
6197b2f
 
972bc8d
 
 
 
 
 
6197b2f
 
6f1f2d9
 
 
 
 
6197b2f
6f1f2d9
 
6197b2f
972bc8d
6197b2f
 
972bc8d
 
 
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
180ed1e
6197b2f
a11892f
6197b2f
 
 
 
972bc8d
6197b2f
 
972bc8d
 
 
 
 
 
 
 
6197b2f
 
 
 
 
 
6f1f2d9
 
 
6197b2f
 
 
180ed1e
6197b2f
a11892f
6197b2f
 
 
 
 
972bc8d
6197b2f
 
972bc8d
 
 
 
 
 
6197b2f
 
972bc8d
 
 
 
6197b2f
972bc8d
 
 
 
6197b2f
 
972bc8d
 
 
 
 
6197b2f
 
 
972bc8d
 
 
 
eb24dbc
772415c
972bc8d
6197b2f
eb24dbc
 
772415c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5a52b9
 
6f1f2d9
 
 
e5a52b9
 
6197b2f
972bc8d
 
 
 
 
 
 
6197b2f
 
972bc8d
6197b2f
a11892f
6197b2f
 
 
 
 
 
 
 
 
 
 
 
 
972bc8d
 
 
6197b2f
 
 
 
 
 
 
 
 
972bc8d
 
 
6197b2f
 
 
 
 
 
 
6f1f2d9
 
 
6197b2f
 
 
972bc8d
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
972bc8d
 
 
 
 
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
972bc8d
 
 
6197b2f
 
 
 
972bc8d
 
 
 
 
 
 
 
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
 
6f1f2d9
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f1f2d9
 
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
6f1f2d9
 
 
 
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
 
972bc8d
 
 
6197b2f
 
 
 
 
 
 
 
 
 
 
972bc8d
 
 
 
 
 
 
 
 
6197b2f
 
972bc8d
6197b2f
 
972bc8d
 
6197b2f
 
1023afa
 
 
 
 
 
9f522b8
 
 
1023afa
 
9f522b8
1023afa
 
 
55a631d
9f522b8
 
 
55a631d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DalleBart model. """

import math
import os
from functools import partial
from typing import Optional, Tuple

import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import unfreeze
from flax.linen import make_causal_mask
from flax.traverse_util import flatten_dict
from jax.random import PRNGKey
from transformers.modeling_flax_outputs import (
    FlaxCausalLMOutputWithCrossAttentions,
    FlaxSeq2SeqLMOutput,
)
from transformers.modeling_flax_utils import ACT2FN
from transformers.models.bart.modeling_flax_bart import (
    FlaxBartAttention,
    FlaxBartDecoder,
    FlaxBartDecoderLayer,
    FlaxBartDecoderLayerCollection,
    FlaxBartEncoder,
    FlaxBartEncoderLayer,
    FlaxBartEncoderLayerCollection,
    FlaxBartForConditionalGeneration,
    FlaxBartForConditionalGenerationModule,
    FlaxBartModule,
    FlaxBartPreTrainedModel,
)
from transformers.utils import logging

import wandb

from .configuration import DalleBartConfig

logger = logging.get_logger(__name__)


class FlaxBartAttention(FlaxBartAttention):
    """
    Edits:
    - causal mask is used only in decoder and considers image_length + 1 (for BOS)
    """

    def setup(self) -> None:
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
                f" and `num_heads`: {self.num_heads})."
            )

        dense = partial(
            nn.Dense,
            self.embed_dim,
            use_bias=self.bias,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.init_std),
        )

        self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
        self.out_proj = dense()

        self.dropout_layer = nn.Dropout(rate=self.dropout)

        if self.causal:
            # used only in decoder
            self.causal_mask = make_causal_mask(
                jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool"
            )


class FlaxBartEncoderLayer(FlaxBartEncoderLayer):
    """
    Edits:
    - no bias
    - use custom FlaxBartAttention
    """

    def setup(self) -> None:
        self.embed_dim = self.config.d_model
        self.self_attn = FlaxBartAttention(
            config=self.config,
            embed_dim=self.embed_dim,
            num_heads=self.config.encoder_attention_heads,
            dropout=self.config.attention_dropout,
            bias=False,
            dtype=self.dtype,
        )
        self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
        self.dropout_layer = nn.Dropout(rate=self.config.dropout)
        self.activation_fn = ACT2FN[self.config.activation_function]
        self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
        self.fc1 = nn.Dense(
            self.config.encoder_ffn_dim,
            dtype=self.dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.init_std),
        )
        self.fc2 = nn.Dense(
            self.embed_dim,
            dtype=self.dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.init_std),
        )
        self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)


class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection):
    """
    Edits:
    - use custom FlaxBartEncoderLayer
    - allow Gradient Checkpointing (nn.remat)
    """

    def setup(self):
        layer_module = (
            nn.remat(FlaxBartEncoderLayer)
            if self.config.gradient_checkpointing
            else FlaxBartEncoderLayer
        )
        self.layers = [
            layer_module(self.config, name=str(i), dtype=self.dtype)
            for i in range(self.config.encoder_layers)
        ]
        self.layerdrop = self.config.encoder_layerdrop


class FlaxBartDecoderLayer(FlaxBartDecoderLayer):
    """
    Edits:
    - no bias
    - uses custom FlaxBartAttention
    """

    def setup(self) -> None:
        self.embed_dim = self.config.d_model
        self.self_attn = FlaxBartAttention(
            config=self.config,
            embed_dim=self.embed_dim,
            num_heads=self.config.decoder_attention_heads,
            dropout=self.config.attention_dropout,
            causal=True,
            bias=False,
            dtype=self.dtype,
        )
        self.dropout_layer = nn.Dropout(rate=self.config.dropout)
        self.activation_fn = ACT2FN[self.config.activation_function]
        self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)

        self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
        self.encoder_attn = FlaxBartAttention(
            config=self.config,
            embed_dim=self.embed_dim,
            num_heads=self.config.decoder_attention_heads,
            dropout=self.config.attention_dropout,
            bias=False,
            dtype=self.dtype,
        )
        self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
        self.fc1 = nn.Dense(
            self.config.encoder_ffn_dim,
            dtype=self.dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.init_std),
        )
        self.fc2 = nn.Dense(
            self.embed_dim,
            dtype=self.dtype,
            use_bias=False,
            kernel_init=jax.nn.initializers.normal(self.config.init_std),
        )
        self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)


class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection):
    """
    Edits:
    - use custom FlaxBartDecoderLayer
    - allow Gradient Checkpointing (nn.remat)
    """

    def setup(self):
        layer_module = (
            nn.remat(FlaxBartDecoderLayer)
            if self.config.gradient_checkpointing
            else FlaxBartDecoderLayer
        )
        self.layers = [
            layer_module(self.config, name=str(i), dtype=self.dtype)
            for i in range(self.config.decoder_layers)
        ]
        self.layerdrop = self.config.decoder_layerdrop


class FlaxBartEncoder(FlaxBartEncoder):
    """
    Edits:
    - offset set to 0 (no padding token)
    - use max_text_length instead of max_position_embeddings
    - use custom FlaxBartEncoderLayerCollection
    - embed_tokens cannot be None (issue at compile time)
    """

    def setup(self):
        self.dropout_layer = nn.Dropout(rate=self.config.dropout)

        embed_dim = self.config.d_model
        self.padding_idx = self.config.pad_token_id
        self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0

        # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 0
        self.embed_positions = nn.Embed(
            self.config.max_text_length + self.offset,
            embed_dim,
            embedding_init=jax.nn.initializers.normal(self.config.init_std),
        )
        self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
        self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)


class FlaxBartDecoder(FlaxBartDecoder):
    """
    Edits:
    - offset set to 0 (no padding token)
    - use image_length + 1 (for BOS) instead of max_position_embeddings
    - use custom FlaxBartDecoderLayerCollection
    - embed_tokens cannot be None (issue at compile time)
    """

    def setup(self):
        self.dropout_layer = nn.Dropout(rate=self.config.dropout)

        embed_dim = self.config.d_model
        self.padding_idx = self.config.pad_token_id
        self.embed_scale = (
            math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
        )

        # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
        # and adjust num_embeddings appropriately. Other models don't have this hack
        self.offset = 0
        self.embed_positions = nn.Embed(
            self.config.image_length + 1 + self.offset,  # image length + 1 for BOS
            embed_dim,
            embedding_init=jax.nn.initializers.normal(self.config.init_std),
        )

        self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
        self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)


class FlaxBartModule(FlaxBartModule):
    """
    Edits
    - use custom FlaxBartEncoder & FlaxBartDecoder
    - use separate embeddings for Encoder & Decoder
    """

    def setup(self):
        encoder_embed_tokens = nn.Embed(
            self.config.encoder_vocab_size,
            self.config.d_model,
            embedding_init=jax.nn.initializers.normal(self.config.init_std),
        )
        decoder_embed_tokens = nn.Embed(
            self.config.image_vocab_size + 1,  # image vocab size + 1 for BOS
            self.config.d_model,
            embedding_init=jax.nn.initializers.normal(self.config.init_std),
        )

        self.encoder = FlaxBartEncoder(
            self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
        )
        self.decoder = FlaxBartDecoder(
            self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
        )


class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
    """
    Edits:
    - added num_params property
    - config_class replaced to DalleBartConfig
    - __init__ accepts abstract_init which does uses parameter shape to initialize the model
    """

    config_class = DalleBartConfig

    def __init__(
        self,
        config: DalleBartConfig,
        input_shape: Tuple[int] = (1, 1),
        seed: int = 0,
        dtype: jnp.dtype = jnp.float32,
        abstract_init: bool = False,
        **kwargs,
    ):
        module = self.module_class(config=config, dtype=dtype, **kwargs)

        # adapted from HuggingFace FlaxPreTrainedModel
        if config is None:
            raise ValueError("config cannot be None")

        if module is None:
            raise ValueError("module cannot be None")

        # Those are private to be exposed as typed property on derived classes.
        self._config = config
        self._module = module

        # Those are public as their type is generic to every derived classes.
        self.key = PRNGKey(seed)
        self.dtype = dtype

        # randomly initialized parameters
        if abstract_init:
            # init the model weights only abstractly, eval_shape will return a pytree
            # with the structure as weights but without any actual values, this will just contain
            # the shape information. Weights need to be loaded later.
            init_fn = partial(self.init_weights, input_shape=input_shape)
            random_params = jax.eval_shape(init_fn, self.key)
        else:
            random_params = self.init_weights(self.key, input_shape)

        # save required_params as set
        self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
        self.params = random_params

    @property
    def num_params(self):
        num_params = jax.tree_map(
            lambda param: param.size, flatten_dict(unfreeze(self.params))
        ).values()
        return sum(list(num_params))


class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
    """
    Edits:
    - no bias
    - lm_head set to image_vocab_size + 1 (for BOS)
    - uses custom FlaxBartModule
    """

    def setup(self):
        self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
        self.lm_head = nn.Dense(
            self.config.image_vocab_size + 1,  # image vocab size + 1 for BOS
            use_bias=False,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.init_std),
        )

    def __call__(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask,
        position_ids,
        decoder_position_ids,
        output_attentions: bool = False,
        output_hidden_states: bool = False,
        return_dict: bool = True,
        deterministic: bool = True,
    ):
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            position_ids=position_ids,
            decoder_position_ids=decoder_position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=deterministic,
        )

        hidden_states = outputs[0]

        if self.config.tie_word_embeddings:
            shared_embedding = self.model.variables["params"]["shared"]["embedding"]
            lm_logits = self.lm_head.apply(
                {"params": {"kernel": shared_embedding.T}}, hidden_states
            )
        else:
            lm_logits = self.lm_head(hidden_states)

        if not return_dict:
            output = (lm_logits,) + outputs[1:]
            return output

        return FlaxSeq2SeqLMOutput(
            logits=lm_logits,
            decoder_hidden_states=outputs.decoder_hidden_states,
            decoder_attentions=outputs.decoder_attentions,
            cross_attentions=outputs.cross_attentions,
            encoder_last_hidden_state=outputs.encoder_last_hidden_state,
            encoder_hidden_states=outputs.encoder_hidden_states,
            encoder_attentions=outputs.encoder_attentions,
        )


class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration):
    """
    Edits:
    - renamed from FlaxBartForConditionalGeneration
    - uses custom FlaxBartPreTrainedModel
    - uses custom FlaxBartForConditionalGenerationModule
    - no bias in decode method
    """

    module_class = FlaxBartForConditionalGenerationModule

    def decode(
        self,
        decoder_input_ids,
        encoder_outputs,
        encoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_attention_mask: Optional[jnp.ndarray] = None,
        decoder_position_ids: Optional[jnp.ndarray] = None,
        past_key_values: dict = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        train: bool = False,
        params: dict = None,
        dropout_rng: PRNGKey = None,
    ):
        output_attentions = (
            output_attentions
            if output_attentions is not None
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.return_dict
        )

        encoder_hidden_states = encoder_outputs[0]
        if encoder_attention_mask is None:
            batch_size, sequence_length = encoder_hidden_states.shape[:2]
            encoder_attention_mask = jnp.ones((batch_size, sequence_length))

        batch_size, sequence_length = decoder_input_ids.shape
        if decoder_attention_mask is None:
            decoder_attention_mask = jnp.ones((batch_size, sequence_length))

        if decoder_position_ids is None:
            if past_key_values is not None:
                raise ValueError(
                    "Make sure to provide `decoder_position_ids` when passing `past_key_values`."
                )

            decoder_position_ids = jnp.broadcast_to(
                jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
            )

        # Handle any PRNG if needed
        rngs = {}
        if dropout_rng is not None:
            rngs["dropout"] = dropout_rng

        inputs = {"params": params or self.params}

        # if past_key_values are passed then cache is already initialized a private flag init_cache has to be
        # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
        # it can be changed by FlaxBartAttention module
        if past_key_values:
            inputs["cache"] = past_key_values
            mutable = ["cache"]
        else:
            mutable = False

        def _decoder_forward(
            module,
            decoder_input_ids,
            decoder_attention_mask,
            decoder_position_ids,
            **kwargs,
        ):
            decoder_module = module._get_decoder_module()
            outputs = decoder_module(
                decoder_input_ids,
                decoder_attention_mask,
                decoder_position_ids,
                **kwargs,
            )
            hidden_states = outputs[0]

            if self.config.tie_word_embeddings:
                shared_embedding = module.model.variables["params"]["shared"][
                    "embedding"
                ]
                lm_logits = module.lm_head.apply(
                    {"params": {"kernel": shared_embedding.T}}, hidden_states
                )
            else:
                lm_logits = module.lm_head(hidden_states)

            return lm_logits, outputs

        outputs = self.module.apply(
            inputs,
            decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
            decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
            decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            deterministic=not train,
            rngs=rngs,
            mutable=mutable,
            method=_decoder_forward,
        )

        if past_key_values is None:
            lm_logits, decoder_outputs = outputs
        else:
            (lm_logits, decoder_outputs), past = outputs

        if return_dict:
            outputs = FlaxCausalLMOutputWithCrossAttentions(
                logits=lm_logits,
                hidden_states=decoder_outputs.hidden_states,
                attentions=decoder_outputs.attentions,
                cross_attentions=decoder_outputs.cross_attentions,
            )
        else:
            outputs = (lm_logits,) + decoder_outputs[1:]

        # add updated cache to model output
        if past_key_values is not None and return_dict:
            outputs["past_key_values"] = unfreeze(past["cache"])
            return outputs
        elif past_key_values is not None and not return_dict:
            outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]

        return outputs

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
        """
        Initializes from a wandb artifact, or delegates loading to the superclass.
        """
        if ":" in pretrained_model_name_or_path and not os.path.isdir(
            pretrained_model_name_or_path
        ):
            # wandb artifact
            artifact = wandb.Api().artifact(pretrained_model_name_or_path)

            # we download everything, including opt_state, so we can resume training if needed
            # see also: #120
            pretrained_model_name_or_path = artifact.download()

        model = super(DalleBart, cls).from_pretrained(
            pretrained_model_name_or_path, *model_args, **kwargs
        )
        model.config.resolved_name_or_path = pretrained_model_name_or_path
        return model