Spaces:
Running
Running
File size: 20,647 Bytes
6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 64d99b2 6197b2f 772415c 6197b2f 972bc8d 6f1f2d9 6197b2f 972bc8d a6252c9 972bc8d a6252c9 972bc8d a6252c9 972bc8d a6252c9 64d99b2 1023afa 6197b2f eb24dbc 6197b2f 972bc8d 6197b2f 972bc8d 8654dc9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 8654dc9 6197b2f 8654dc9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 180ed1e 6197b2f 180ed1e 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 180ed1e 6197b2f 180ed1e 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 180ed1e 6197b2f a11892f 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 180ed1e 6197b2f a11892f 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d eb24dbc 772415c 972bc8d 6197b2f eb24dbc 772415c e5a52b9 6f1f2d9 e5a52b9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f a11892f 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 6f1f2d9 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 972bc8d 6197b2f 1023afa 9f522b8 1023afa 9f522b8 1023afa 55a631d 9f522b8 55a631d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and The Google Flax Team Authors And The HuggingFace Inc. team and the DalleBart team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" DalleBart model. """
import math
import os
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import unfreeze
from flax.linen import make_causal_mask
from flax.traverse_util import flatten_dict
from jax.random import PRNGKey
from transformers.modeling_flax_outputs import (
FlaxCausalLMOutputWithCrossAttentions,
FlaxSeq2SeqLMOutput,
)
from transformers.modeling_flax_utils import ACT2FN
from transformers.models.bart.modeling_flax_bart import (
FlaxBartAttention,
FlaxBartDecoder,
FlaxBartDecoderLayer,
FlaxBartDecoderLayerCollection,
FlaxBartEncoder,
FlaxBartEncoderLayer,
FlaxBartEncoderLayerCollection,
FlaxBartForConditionalGeneration,
FlaxBartForConditionalGenerationModule,
FlaxBartModule,
FlaxBartPreTrainedModel,
)
from transformers.utils import logging
import wandb
from .configuration import DalleBartConfig
logger = logging.get_logger(__name__)
class FlaxBartAttention(FlaxBartAttention):
"""
Edits:
- causal mask is used only in decoder and considers image_length + 1 (for BOS)
"""
def setup(self) -> None:
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {self.num_heads})."
)
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=self.bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.dropout_layer = nn.Dropout(rate=self.dropout)
if self.causal:
# used only in decoder
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.image_length + 1), dtype="bool"), dtype="bool"
)
class FlaxBartEncoderLayer(FlaxBartEncoderLayer):
"""
Edits:
- no bias
- use custom FlaxBartAttention
"""
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.encoder_attention_heads,
dropout=self.config.attention_dropout,
bias=False,
dtype=self.dtype,
)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartEncoderLayerCollection(FlaxBartEncoderLayerCollection):
"""
Edits:
- use custom FlaxBartEncoderLayer
- allow Gradient Checkpointing (nn.remat)
"""
def setup(self):
layer_module = (
nn.remat(FlaxBartEncoderLayer)
if self.config.gradient_checkpointing
else FlaxBartEncoderLayer
)
self.layers = [
layer_module(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.encoder_layers)
]
self.layerdrop = self.config.encoder_layerdrop
class FlaxBartDecoderLayer(FlaxBartDecoderLayer):
"""
Edits:
- no bias
- uses custom FlaxBartAttention
"""
def setup(self) -> None:
self.embed_dim = self.config.d_model
self.self_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
causal=True,
bias=False,
dtype=self.dtype,
)
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
self.activation_fn = ACT2FN[self.config.activation_function]
self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout)
self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.encoder_attn = FlaxBartAttention(
config=self.config,
embed_dim=self.embed_dim,
num_heads=self.config.decoder_attention_heads,
dropout=self.config.attention_dropout,
bias=False,
dtype=self.dtype,
)
self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
self.fc1 = nn.Dense(
self.config.encoder_ffn_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.fc2 = nn.Dense(
self.embed_dim,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartDecoderLayerCollection(FlaxBartDecoderLayerCollection):
"""
Edits:
- use custom FlaxBartDecoderLayer
- allow Gradient Checkpointing (nn.remat)
"""
def setup(self):
layer_module = (
nn.remat(FlaxBartDecoderLayer)
if self.config.gradient_checkpointing
else FlaxBartDecoderLayer
)
self.layers = [
layer_module(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.decoder_layers)
]
self.layerdrop = self.config.decoder_layerdrop
class FlaxBartEncoder(FlaxBartEncoder):
"""
Edits:
- offset set to 0 (no padding token)
- use max_text_length instead of max_position_embeddings
- use custom FlaxBartEncoderLayerCollection
- embed_tokens cannot be None (issue at compile time)
"""
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 0
self.embed_positions = nn.Embed(
self.config.max_text_length + self.offset,
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBartEncoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartDecoder(FlaxBartDecoder):
"""
Edits:
- offset set to 0 (no padding token)
- use image_length + 1 (for BOS) instead of max_position_embeddings
- use custom FlaxBartDecoderLayerCollection
- embed_tokens cannot be None (issue at compile time)
"""
def setup(self):
self.dropout_layer = nn.Dropout(rate=self.config.dropout)
embed_dim = self.config.d_model
self.padding_idx = self.config.pad_token_id
self.embed_scale = (
math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0
)
# Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 0
self.embed_positions = nn.Embed(
self.config.image_length + 1 + self.offset, # image length + 1 for BOS
embed_dim,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.layers = FlaxBartDecoderLayerCollection(self.config, self.dtype)
self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05)
class FlaxBartModule(FlaxBartModule):
"""
Edits
- use custom FlaxBartEncoder & FlaxBartDecoder
- use separate embeddings for Encoder & Decoder
"""
def setup(self):
encoder_embed_tokens = nn.Embed(
self.config.encoder_vocab_size,
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
decoder_embed_tokens = nn.Embed(
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
self.config.d_model,
embedding_init=jax.nn.initializers.normal(self.config.init_std),
)
self.encoder = FlaxBartEncoder(
self.config, dtype=self.dtype, embed_tokens=encoder_embed_tokens
)
self.decoder = FlaxBartDecoder(
self.config, dtype=self.dtype, embed_tokens=decoder_embed_tokens
)
class FlaxBartPreTrainedModel(FlaxBartPreTrainedModel):
"""
Edits:
- added num_params property
- config_class replaced to DalleBartConfig
- __init__ accepts abstract_init which does uses parameter shape to initialize the model
"""
config_class = DalleBartConfig
def __init__(
self,
config: DalleBartConfig,
input_shape: Tuple[int] = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
abstract_init: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
# adapted from HuggingFace FlaxPreTrainedModel
if config is None:
raise ValueError("config cannot be None")
if module is None:
raise ValueError("module cannot be None")
# Those are private to be exposed as typed property on derived classes.
self._config = config
self._module = module
# Those are public as their type is generic to every derived classes.
self.key = PRNGKey(seed)
self.dtype = dtype
# randomly initialized parameters
if abstract_init:
# init the model weights only abstractly, eval_shape will return a pytree
# with the structure as weights but without any actual values, this will just contain
# the shape information. Weights need to be loaded later.
init_fn = partial(self.init_weights, input_shape=input_shape)
random_params = jax.eval_shape(init_fn, self.key)
else:
random_params = self.init_weights(self.key, input_shape)
# save required_params as set
self._required_params = set(flatten_dict(unfreeze(random_params)).keys())
self.params = random_params
@property
def num_params(self):
num_params = jax.tree_map(
lambda param: param.size, flatten_dict(unfreeze(self.params))
).values()
return sum(list(num_params))
class FlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
"""
Edits:
- no bias
- lm_head set to image_vocab_size + 1 (for BOS)
- uses custom FlaxBartModule
"""
def setup(self):
self.model = FlaxBartModule(config=self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.image_vocab_size + 1, # image vocab size + 1 for BOS
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.init_std),
)
def __call__(
self,
input_ids,
attention_mask,
decoder_input_ids,
decoder_attention_mask,
position_ids,
decoder_position_ids,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
deterministic: bool = True,
):
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
position_ids=position_ids,
decoder_position_ids=decoder_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=deterministic,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.model.variables["params"]["shared"]["embedding"]
lm_logits = self.lm_head.apply(
{"params": {"kernel": shared_embedding.T}}, hidden_states
)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
output = (lm_logits,) + outputs[1:]
return output
return FlaxSeq2SeqLMOutput(
logits=lm_logits,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
class DalleBart(FlaxBartPreTrainedModel, FlaxBartForConditionalGeneration):
"""
Edits:
- renamed from FlaxBartForConditionalGeneration
- uses custom FlaxBartPreTrainedModel
- uses custom FlaxBartForConditionalGenerationModule
- no bias in decode method
"""
module_class = FlaxBartForConditionalGenerationModule
def decode(
self,
decoder_input_ids,
encoder_outputs,
encoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_attention_mask: Optional[jnp.ndarray] = None,
decoder_position_ids: Optional[jnp.ndarray] = None,
past_key_values: dict = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
train: bool = False,
params: dict = None,
dropout_rng: PRNGKey = None,
):
output_attentions = (
output_attentions
if output_attentions is not None
else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.return_dict
)
encoder_hidden_states = encoder_outputs[0]
if encoder_attention_mask is None:
batch_size, sequence_length = encoder_hidden_states.shape[:2]
encoder_attention_mask = jnp.ones((batch_size, sequence_length))
batch_size, sequence_length = decoder_input_ids.shape
if decoder_attention_mask is None:
decoder_attention_mask = jnp.ones((batch_size, sequence_length))
if decoder_position_ids is None:
if past_key_values is not None:
raise ValueError(
"Make sure to provide `decoder_position_ids` when passing `past_key_values`."
)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)
)
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be
# passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that
# it can be changed by FlaxBartAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
def _decoder_forward(
module,
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
):
decoder_module = module._get_decoder_module()
outputs = decoder_module(
decoder_input_ids,
decoder_attention_mask,
decoder_position_ids,
**kwargs,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = module.model.variables["params"]["shared"][
"embedding"
]
lm_logits = module.lm_head.apply(
{"params": {"kernel": shared_embedding.T}}, hidden_states
)
else:
lm_logits = module.lm_head(hidden_states)
return lm_logits, outputs
outputs = self.module.apply(
inputs,
decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"),
decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"),
decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
deterministic=not train,
rngs=rngs,
mutable=mutable,
method=_decoder_forward,
)
if past_key_values is None:
lm_logits, decoder_outputs = outputs
else:
(lm_logits, decoder_outputs), past = outputs
if return_dict:
outputs = FlaxCausalLMOutputWithCrossAttentions(
logits=lm_logits,
hidden_states=decoder_outputs.hidden_states,
attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
)
else:
outputs = (lm_logits,) + decoder_outputs[1:]
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs["past_key_values"] = unfreeze(past["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:]
return outputs
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
"""
Initializes from a wandb artifact, or delegates loading to the superclass.
"""
if ":" in pretrained_model_name_or_path and not os.path.isdir(
pretrained_model_name_or_path
):
# wandb artifact
artifact = wandb.Api().artifact(pretrained_model_name_or_path)
# we download everything, including opt_state, so we can resume training if needed
# see also: #120
pretrained_model_name_or_path = artifact.download()
model = super(DalleBart, cls).from_pretrained(
pretrained_model_name_or_path, *model_args, **kwargs
)
model.config.resolved_name_or_path = pretrained_model_name_or_path
return model
|