Spaces:
Running
Running
File size: 9,764 Bytes
16f038a 11ae595 16f038a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
{
"cells": [
{
"cell_type": "markdown",
"id": "d0b72877",
"metadata": {},
"source": [
"# vqgan-jax-encoding-with-captions"
]
},
{
"cell_type": "markdown",
"id": "875c82b3",
"metadata": {},
"source": [
"Notebook based on [vqgan-jax-reconstruction](https://colab.research.google.com/drive/1mdXXsMbV6K_LTvCh3IImRsFIWcKU5m1w?usp=sharing) by @surajpatil.\n",
"\n",
"We process a `tsv` file with `image_file` and `caption` fields, and add a `vqgan_indices` column with indices extracted from a VQGAN-JAX model."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "3b59489e",
"metadata": {},
"outputs": [],
"source": [
"import io\n",
"\n",
"import requests\n",
"from PIL import Image\n",
"import numpy as np\n",
"from tqdm import tqdm\n",
"\n",
"import torch\n",
"import torchvision.transforms as T\n",
"import torchvision.transforms.functional as TF\n",
"from torchvision.transforms import InterpolationMode\n",
"from torch.utils.data import Dataset, DataLoader\n",
"\n",
"import jax\n",
"from jax import pmap"
]
},
{
"cell_type": "markdown",
"id": "511c3b9e",
"metadata": {},
"source": [
"## VQGAN-JAX model"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2ca50dc7",
"metadata": {},
"outputs": [],
"source": [
"from vqgan_jax.modeling_flax_vqgan import VQModel"
]
},
{
"cell_type": "markdown",
"id": "7b60da9a",
"metadata": {},
"source": [
"We'll use a VQGAN trained by using Taming Transformers and converted to a JAX model."
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "29ce8b15",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "db406bdfc5d5428eaeae1631a04989dd",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/433 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e37f07fba6d48fca70313ae1fa8cc32",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/304M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:absl:Starting the local TPU driver.\n",
"INFO:absl:Unable to initialize backend 'tpu_driver': Not found: Unable to find driver in registry given worker: local://\n",
"INFO:absl:Unable to initialize backend 'gpu': Not found: Could not find registered platform with name: \"cuda\". Available platform names are: Interpreter Host TPU\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
]
}
],
"source": [
"model = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
]
},
{
"cell_type": "markdown",
"id": "c7c4c1e6",
"metadata": {},
"source": [
"## Dataset"
]
},
{
"cell_type": "markdown",
"id": "7014a7ce",
"metadata": {},
"source": [
"We use Luke Melas-Kyriazi's `dataset.py` which reads image paths and captions from a tsv file that contains both. We only need the images for encoding."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "85832702",
"metadata": {},
"outputs": [],
"source": [
"from dalle_mini.dataset import *"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "81b19eca",
"metadata": {},
"outputs": [],
"source": [
"cc12m_images = '/data/CC12M/images'\n",
"cc12m_list = '/data/CC12M/images-list-clean.tsv'\n",
"# cc12m_list = '/data/CC12M/images-10000.tsv'\n",
"cc12m_output = '/data/CC12M/images-encoded.tsv'"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fecc9a00",
"metadata": {},
"outputs": [],
"source": [
"image_size = 256\n",
"def image_transform(image):\n",
" s = min(image.size)\n",
" r = image_size / s\n",
" s = (round(r * image.size[1]), round(r * image.size[0]))\n",
" image = TF.resize(image, s, interpolation=InterpolationMode.LANCZOS)\n",
" image = TF.center_crop(image, output_size = 2 * [image_size])\n",
" image = torch.unsqueeze(T.ToTensor()(image), 0)\n",
" image = image.permute(0, 2, 3, 1).numpy()\n",
" return image"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4ce2211f",
"metadata": {},
"outputs": [],
"source": [
"dataset = CaptionDataset(\n",
" images_root=cc12m_images,\n",
" captions_path=cc12m_list,\n",
" image_transform=image_transform,\n",
" image_transform_type='torchvision',\n",
" include_captions=False\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "cc922704",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"8592141"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(dataset)"
]
},
{
"cell_type": "markdown",
"id": "62ad01c3",
"metadata": {},
"source": [
"## Encoding"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "88f36d0b",
"metadata": {},
"outputs": [],
"source": [
"def encode(model, batch):\n",
"# print(\"jitting encode function\")\n",
" _, indices = model.encode(batch)\n",
" return indices"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "1f35f0cb",
"metadata": {},
"outputs": [],
"source": [
"def superbatch_generator(dataloader, num_tpus):\n",
" iter_loader = iter(dataloader)\n",
" for batch in iter_loader:\n",
" superbatch = [batch.squeeze(1)]\n",
" try:\n",
" for b in range(num_tpus-1):\n",
" batch = next(iter_loader)\n",
" if batch is None:\n",
" break\n",
" # Skip incomplete last batch\n",
" if batch.shape[0] == dataloader.batch_size:\n",
" superbatch.append(batch.squeeze(1))\n",
" except StopIteration:\n",
" pass\n",
" superbatch = torch.stack(superbatch, axis=0)\n",
" yield superbatch"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "2210705b",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"\n",
"def encode_captioned_dataset(dataset, output_tsv, batch_size=32, num_workers=16):\n",
" if os.path.isfile(output_tsv):\n",
" print(f\"Destination file {output_tsv} already exists, please move away.\")\n",
" return\n",
" \n",
" num_tpus = 8 \n",
" dataloader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)\n",
" superbatches = superbatch_generator(dataloader, num_tpus=num_tpus)\n",
" \n",
" p_encoder = pmap(lambda batch: encode(model, batch))\n",
"\n",
" # We save each superbatch to avoid reallocation of buffers as we process them.\n",
" # We keep the file open to prevent excessive file seeks.\n",
" with open(output_tsv, \"w\") as file:\n",
" iterations = len(dataset) // (batch_size * num_tpus)\n",
" for n in tqdm(range(iterations)):\n",
" superbatch = next(superbatches)\n",
" encoded = p_encoder(superbatch.numpy())\n",
" encoded = encoded.reshape(-1, encoded.shape[-1])\n",
"\n",
" # Extract fields from the dataset internal `captions` property, and save to disk\n",
" start_index = n * batch_size * num_tpus\n",
" end_index = (n+1) * batch_size * num_tpus\n",
" paths = dataset.captions[\"image_file\"][start_index:end_index].values\n",
" captions = dataset.captions[\"caption\"][start_index:end_index].values\n",
" encoded_as_string = list(map(lambda item: np.array2string(item, separator=',', max_line_width=50000, formatter={'int':lambda x: str(x)}), encoded))\n",
" batch_df = pd.DataFrame.from_dict({\"image_file\": paths, \"caption\": captions, \"encoding\": encoded_as_string})\n",
" batch_df.to_csv(file, sep='\\t', header=(n==0), index=None)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7704863d",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" 4%|██▋ | 621/16781 [07:09<3:02:46, 1.47it/s]"
]
}
],
"source": [
"encode_captioned_dataset(dataset, cc12m_output, batch_size=64, num_workers=16)"
]
},
{
"cell_type": "markdown",
"id": "8953dd84",
"metadata": {},
"source": [
"----"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|