File size: 39,356 Bytes
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aa2f4b
 
 
42ce7dd
 
46cb01f
 
 
 
 
 
90320ea
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
a30dbd3
3f0364c
46cb01f
 
 
 
 
 
 
 
 
3f0364c
46cb01f
 
 
3f0364c
46cb01f
 
3f0364c
46cb01f
de74f11
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0364c
6c5fc6a
3f0364c
0be4942
3f0364c
19d68bb
3f0364c
 
46cb01f
 
 
 
 
 
 
3f0364c
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3d61350
 
 
 
 
 
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0364c
46cb01f
 
3f0364c
 
 
46cb01f
 
 
 
 
 
 
 
 
 
 
48c07ca
46cb01f
 
 
 
 
5a3211f
 
 
46cb01f
3f0364c
46cb01f
 
 
 
 
 
6c27b0d
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c44a7d
46cb01f
 
 
 
 
 
0d94b71
46cb01f
 
 
 
 
 
 
 
 
 
 
498559f
dbe8c41
498559f
 
 
 
 
1c44a7d
5b79afd
1c44a7d
754f876
 
 
 
 
 
46cb01f
 
 
 
 
 
 
a104edb
46cb01f
 
a104edb
46cb01f
 
 
 
 
 
c9e9575
 
46cb01f
 
 
 
 
3f0364c
 
ad6ad64
 
a173dad
ad6ad64
3f0364c
 
 
 
 
 
 
 
 
ad6ad64
3f0364c
 
 
 
 
 
 
 
ad6ad64
 
3f0364c
 
 
 
ad6ad64
 
 
3f0364c
 
ad6ad64
3f0364c
 
 
 
ad6ad64
3f0364c
 
 
 
 
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a3211f
46cb01f
 
 
 
 
5a3211f
 
46cb01f
 
 
 
 
 
 
19070ab
 
b20769d
19070ab
754f876
19070ab
 
 
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0364c
 
 
 
 
 
 
 
46cb01f
97a008e
 
 
 
46cb01f
d9f5a35
46cb01f
 
d9f5a35
46cb01f
 
d9f5a35
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0364c
 
93c5ac8
3f0364c
93c5ac8
3f0364c
 
de74f11
46cb01f
 
 
4aced93
 
 
 
 
 
 
 
 
 
 
 
09362db
4aced93
 
 
 
 
3d61350
e803feb
3d61350
 
46cb01f
3d61350
 
 
 
 
46cb01f
6d252e9
 
 
4aced93
 
 
 
 
 
3d61350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cb01f
4aced93
 
 
 
 
 
3d61350
 
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f0364c
 
46cb01f
 
 
 
835ea55
 
 
 
 
 
 
 
46cb01f
 
 
 
835ea55
46cb01f
 
 
 
3f0364c
19946be
 
6c1f112
df3c7bd
 
 
 
46cb01f
df3c7bd
835ea55
 
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9e9575
46cb01f
 
c9e9575
 
46cb01f
 
 
 
c9e9575
46cb01f
 
 
5a3211f
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600ad79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cb01f
 
c9e9575
 
 
5960e87
c9e9575
 
 
 
4aced93
 
f65ccb3
46cb01f
 
9db361a
 
d61405b
46cb01f
 
 
9db361a
46cb01f
 
 
 
 
9db361a
46cb01f
 
 
c9e9575
 
 
 
 
 
 
4d55db6
c9e9575
 
46cb01f
c9e9575
4d55db6
c9e9575
 
 
 
46cb01f
c9e9575
46cb01f
 
c9e9575
46cb01f
 
9db361a
46cb01f
 
9db361a
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9db361a
46cb01f
9db361a
46cb01f
 
 
 
 
 
 
 
 
c9e9575
 
 
 
 
46cb01f
 
 
498559f
46cb01f
566d5f2
46cb01f
 
32dc2d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19070ab
 
566d5f2
32dc2d8
0d94b71
32dc2d8
 
19070ab
566d5f2
 
a30dbd3
d449092
 
 
6e89e9e
 
 
 
 
 
aecf3a7
 
 
a30dbd3
 
 
 
3e6ab1f
a30dbd3
aecf3a7
d449092
 
99a1ff5
d449092
 
 
 
 
09362db
 
 
aecf3a7
 
 
09362db
a30dbd3
 
d449092
 
 
 
 
 
 
 
 
 
 
 
566d5f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19070ab
3fef9c1
566d5f2
900136f
566d5f2
754f876
283adc6
a30dbd3
3fef9c1
 
 
566d5f2
 
 
 
 
 
 
19070ab
566d5f2
46cb01f
1c44a7d
a30dbd3
754f876
1c44a7d
46cb01f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d94b71
46cb01f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for seq2seq, text to image.
Script adapted from run_summarization_flax.py
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.

import os
# set a common huggingface cache folder (used with datasets and transformers) and wandb cache folder (used with artifacts)
os.environ['HF_HOME'] = '/data/huggingface/'     # required before importing transformers & datasets
os.environ['WANDB_CACHE_DIR'] = '/data/wandb/'   # required before importing wandb

import logging as pylogging    # To avoid collision with transformers.utils.logging
import sys
import time
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Optional
import json

import datasets
import nltk  # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import Dataset, load_dataset, load_metric
from tqdm import tqdm

import jax
import jax.numpy as jnp
import optax
import transformers
from filelock import FileLock
from flax import jax_utils, traverse_util
from flax.serialization import from_bytes, to_bytes
import flax.linen as nn
from flax.jax_utils import unreplicate
from flax.training import train_state
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
from transformers import (
    CONFIG_MAPPING,
    FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
    AutoConfig,
    AutoTokenizer,
    FlaxAutoModelForSeq2SeqLM,
    FlaxBartForConditionalGeneration,
    HfArgumentParser,
    TrainingArguments,
)
from transformers.models.bart.modeling_flax_bart import *
from transformers.file_utils import is_offline_mode

import wandb

logger = pylogging.getLogger(__name__)

try:
    nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
    if is_offline_mode():
        raise LookupError(
            "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
        )
    with FileLock(".lock") as lock:
        nltk.download("punkt", quiet=True)


MODEL_CONFIG_CLASSES = list(FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)


# Model hyperparameters, for convenience
# TODO: the model has now it's own definition file and should be imported
OUTPUT_VOCAB_SIZE = 16384 + 1  # encoded image token space + 1 for bos
OUTPUT_LENGTH = 256 + 1  # number of encoded tokens + 1 for bos
BOS_TOKEN_ID = 16384
BASE_MODEL = 'facebook/bart-large-cnn'  # we currently have issues with bart-large


@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
    """

    model_name_or_path: Optional[str] = field(
        default=BASE_MODEL,
        metadata={
            "help": "The model checkpoint for weights initialization."
            "Don't set if you want to train a model from scratch."
        },
    )
    model_type: Optional[str] = field(
        default=None,
        metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
    )
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
    )
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
    )
    cache_dir: Optional[str] = field(
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
    )
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
    )
    dtype: Optional[str] = field(
        default="float32",
        metadata={
            "help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
        },
    )
    from_checkpoint: Optional[str] = field(
        default=None,
        metadata={
            "help": "Loads a pretrained wandb checkpoint. Use artifact reference."
        },
    )


@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
    """

    dataset_name: Optional[str] = field(
        default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
    )
    dataset_config_name: Optional[str] = field(
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
    )
    text_column: Optional[str] = field(
        default='caption',
        metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
    )
    encoding_column: Optional[str] = field(
        default='encoding',
        metadata={"help": "The name of the column in the datasets containing the image encodings."},
    )
    train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
    validation_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
    )
    test_file: Optional[str] = field(
        default=None,
        metadata={"help": "An optional input predict data file to do prediction on (a text file)."},
    )
    max_source_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    no_decay: bool = field(
        default=False, metadata={"help": "Whether to use decay in the learning rate scheduler."}
    )
    max_target_length: Optional[int] = field(
        default=OUTPUT_LENGTH,
        metadata={
            "help": "The maximum total sequence length for target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
        },
    )
    val_max_target_length: Optional[int] = field(
        default=OUTPUT_LENGTH,
        metadata={
            "help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
            "This argument is also used to override the `max_length` param of `model.generate`, which is used "
            "during evaluation."
        },
    )
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    max_eval_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
            "value if set."
        },
    )
    max_predict_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
            "value if set."
        },
    )
    preprocessing_num_workers: Optional[int] = field(
        default=80,     # ensure we have the same datasets cached data and avoid using too much space
        metadata={"help": "The number of processes to use for the preprocessing."},
    )
    source_prefix: Optional[str] = field(
        default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
    )
    predict_with_generate: bool = field(
        default=False, metadata={"help": "Whether to use generate to calculate generative metrics."}
    )
    num_beams: Optional[int] = field(
        default=None,
        metadata={
            "help": "Number of beams to use for evaluation. This argument will be passed to `model.generate`, "
            "which is used during evaluation."
        },
    )
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    log_interval: Optional[int] = field(
        default=40,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
    log_model: bool = field(
        default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
    )
    save_model_steps: Optional[int] = field(
        default=3000,   # about once every hour in our experiments
        metadata={
            "help": "For logging the model more frequently. Used only when `log_model` is set."
        },
    )

    def __post_init__(self):
        if self.dataset_name is None and self.train_file is None and self.validation_file is None:
            raise ValueError("Need either a dataset name or a training/validation file.")
        else:
            if self.train_file is not None:
                extension = self.train_file.split(".")[-1]
                assert extension in ["tsv", "csv", "json"], "`train_file` should be a tsv, csv or json file."
            if self.validation_file is not None:
                extension = self.validation_file.split(".")[-1]
                assert extension in ["tsv", "csv", "json"], "`validation_file` should be a tsv, csv or json file."
        if self.val_max_target_length is None:
            self.val_max_target_length = self.max_target_length


class TrainState(train_state.TrainState):
    dropout_rng: jnp.ndarray
    grad_accum: jnp.ndarray
    optimizer_step: int

    def replicate(self):
        return jax_utils.replicate(self).replace(dropout_rng=shard_prng_key(self.dropout_rng))


class CustomFlaxBartModule(FlaxBartModule):
    def setup(self):
        # check config is valid, otherwise set default values
        self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
        self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)

        # we keep shared to easily load pre-trained weights
        self.shared = nn.Embed(
            self.config.vocab_size,
            self.config.d_model,
            embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
            dtype=self.dtype,
        )
        # a separate embedding is used for the decoder
        self.decoder_embed = nn.Embed(
            self.config.vocab_size_output,
            self.config.d_model,
            embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
            dtype=self.dtype,
        )
        self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)

        # the decoder has a different config
        decoder_config = BartConfig(self.config.to_dict())
        decoder_config.max_position_embeddings = self.config.max_position_embeddings_decoder
        decoder_config.vocab_size = self.config.vocab_size_output
        self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)

class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
    def setup(self):
        # check config is valid, otherwise set default values
        self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)

        self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
        self.lm_head = nn.Dense(
            self.config.vocab_size_output,
            use_bias=False,
            dtype=self.dtype,
            kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
        )
        self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.config.vocab_size_output))

class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
    module_class = CustomFlaxBartForConditionalGenerationModule
    

def data_loader(rng: jax.random.PRNGKey, dataset: Dataset, batch_size: int, shuffle: bool = False):
    """
    Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
    Shuffle batches if `shuffle` is `True`.
    """
    steps_per_epoch = len(dataset) // batch_size

    if shuffle:
        batch_idx = jax.random.permutation(rng, len(dataset))
    else:
        batch_idx = jnp.arange(len(dataset))

    batch_idx = batch_idx[: steps_per_epoch * batch_size]  # Skip incomplete batch.
    batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))

    for idx in batch_idx:
        batch = dataset[idx]
        batch = {k: jnp.array(v) for k, v in batch.items()}

        batch = shard(batch)

        yield batch


def create_learning_rate_fn(
    train_ds_size: int, train_batch_size: int, num_train_epochs: int, num_warmup_steps: int, learning_rate: float, no_decay: bool
) -> Callable[[int], jnp.array]:
    """Returns a linear warmup, linear_decay learning rate function."""
    steps_per_epoch = train_ds_size // train_batch_size
    num_train_steps = steps_per_epoch * num_train_epochs
    warmup_fn = optax.linear_schedule(init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps)
    if no_decay:
        return warmup_fn
    decay_fn = optax.linear_schedule(
        init_value=learning_rate, end_value=0, transition_steps=num_train_steps - num_warmup_steps
    )
    schedule_fn = optax.join_schedules(schedules=[warmup_fn, decay_fn], boundaries=[num_warmup_steps])
    return schedule_fn


def wandb_log(metrics, step=None, prefix=None):
    if jax.process_index() == 0:
        log_metrics = {f'{prefix}/{k}' if prefix is not None else k: jax.device_get(v) for k,v in metrics.items()}
        if step is not None:
            log_metrics['train/step'] = step
        wandb.log(log_metrics)


def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()

    if (
        os.path.exists(training_args.output_dir)
        and os.listdir(training_args.output_dir)
        and training_args.do_train
        and not training_args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({training_args.output_dir}) already exists and is not empty."
            "Use --overwrite_output_dir to overcome."
        )
    
    # Set up wandb run
    wandb.init(
        entity='wandb',
        project='hf-flax-dalle-mini',
        job_type='Seq2SeqVQGAN',
        config=parser.parse_args()
    )

    # set default x-axis as 'train/step'
    wandb.define_metric('train/step')
    wandb.define_metric('*', step_metric='train/step')

    # Make one log on every process with the configuration for debugging.
    pylogging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=pylogging.INFO,
    )
    # Setup logging, we only want one process per machine to log things on the screen.
    logger.setLevel(pylogging.INFO if jax.process_index() == 0 else pylogging.ERROR)
    if jax.process_index() == 0:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()

    # Set the verbosity to info of the Transformers logger (on main process only):
    logger.info(f"Training/evaluation parameters {training_args}")

    # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    data_files = {}
    if data_args.train_file is not None:
        data_files["train"] = data_args.train_file
    if data_args.validation_file is not None:
        data_files["validation"] = data_args.validation_file
    if data_args.test_file is not None:
        data_files["test"] = data_args.test_file
    dataset = load_dataset("csv", data_files=data_files, cache_dir=model_args.cache_dir, delimiter="\t")
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    # Set up items to load or create
    tokenizer = None
    artifact_dir = None

    def restore_state(state, artifact_dir):
        # restore optimizer state
        if (Path(artifact_dir) / 'opt_state.msgpack').exists():
            with (Path(artifact_dir) /  'opt_state.msgpack').open('rb') as f:
                opt_state = from_bytes(state.opt_state, f.read())
        
        # restore steps
        if (Path(artifact_dir) / 'training_state.json').exists():
            with (Path(artifact_dir) /  'training_state.json').open('r') as f:
                training_state = json.load(f)
            step = training_state['step']
            optimizer_step = step // training_args.gradient_accumulation_steps
            state.replace(step=step, optimizer_step=optimizer_step)
    
    if model_args.from_checkpoint is not None:
        artifact = wandb.run.use_artifact(model_args.from_checkpoint)
        artifact_dir = artifact.download()
        model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)

        # some models will try to change bos (because of force_bos_token_to_be_generated)
        # we ensure bos and eos are not forced
        model.config.force_bos_token_to_be_generated = False
        model.config.forced_bos_token_id = None
        model.config.forced_eos_token_id = None

        # used in the preprocessing function
        config = model.config

        # load tokenizer if present
        if (Path(artifact_dir) / 'tokenizer_config.json').exists():
            tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )

    else:
        base_model = FlaxAutoModelForSeq2SeqLM.from_pretrained(
            model_args.model_name_or_path, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype)
        )
        # Set up our new model config
        config = BartConfig.from_pretrained(model_args.model_name_or_path)
        config.tie_word_embeddings = False
        config.decoder_start_token_id = BOS_TOKEN_ID  # for first token
        config.bos_token_id = BOS_TOKEN_ID  # should not be used (due to forced_bos_token_id)
        config.pos_token_id = BOS_TOKEN_ID  # should not be needed (as we generate until max_length)
        config.eos_token_id = BOS_TOKEN_ID + 1  # unreachable
        config.forced_bos_token_id = None  # we don't need this token
        config.forced_eos_token_id = None  # we don't need this token
        config.force_bos_token_to_be_generated = False  # otherwise it sets bos_token_id at loading
        config.min_length = data_args.max_target_length
        config.max_length = data_args.max_target_length

        # Create a custom model and initialize it randomly
        model = CustomFlaxBartForConditionalGeneration(config, seed=training_args.seed, dtype=getattr(jnp, model_args.dtype))

        # Use pre-trained weights for encoder
        model.params['model']['encoder'] = base_model.params['model']['encoder']
        model.params['model']['shared'] = base_model.params['model']['shared']
        del base_model

    # Load tokenizer if it has not been set
    if tokenizer is None:
        tokenizer = AutoTokenizer.from_pretrained(
            model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer
        )

    print(f"TPUs: {jax.device_count()}")
    assert jax.device_count() == 8, "TPUs in use, please check running processes"

    prefix = data_args.source_prefix if data_args.source_prefix is not None else ""

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    if training_args.do_train:
        column_names = dataset["train"].column_names
    elif training_args.do_eval:
        column_names = dataset["validation"].column_names
    elif training_args.do_predict:
        column_names = dataset["test"].column_names
    else:
        logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
        return

    # Get the column names for input/target.
    text_column = data_args.text_column
    encoding_column = data_args.encoding_column

    # Temporarily set max_target_length for training.
    max_target_length = data_args.max_target_length

    def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
        """
        Shift input ids one token to the right.
        """
        shifted_input_ids = np.zeros(input_ids.shape)
        shifted_input_ids[:, 1:] = input_ids[:, :-1]
        shifted_input_ids[:, 0] = decoder_start_token_id
        return shifted_input_ids

    def preprocess_function(examples):
        inputs = examples[text_column]
        inputs = [prefix + inp for inp in inputs]
	# Setting padding="max_length" as we need fixed length inputs for jitted functions
        model_inputs = tokenizer(
            inputs, max_length=data_args.max_source_length, padding="max_length", truncation=True, return_tensors="np"
        )

        # set up targets
        # Note: labels correspond to our target indices
        # decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
        labels = [eval(indices) for indices in examples['encoding']]
        labels = np.asarray(labels)

        # We need the labels, in addition to the decoder_input_ids, for the compute_loss function
        model_inputs["labels"] = labels

        # In our case, this prepends the bos token and removes the last one
        decoder_input_ids = shift_tokens_right(labels, config.decoder_start_token_id)
        model_inputs["decoder_input_ids"] = decoder_input_ids

        return model_inputs

    if training_args.do_train:
        if "train" not in dataset:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = dataset["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on train dataset",
        )

    if training_args.do_eval:
        max_target_length = data_args.val_max_target_length
        if "validation" not in dataset:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = dataset["validation"]
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
        eval_dataset = eval_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on validation dataset",
        )

    if training_args.do_predict:
        max_target_length = data_args.val_max_target_length
        if "test" not in dataset:
            raise ValueError("--do_predict requires a test dataset")
        predict_dataset = dataset["test"]
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
        predict_dataset = predict_dataset.map(
            preprocess_function,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            remove_columns=column_names,
            load_from_cache_file=not data_args.overwrite_cache,
            desc="Running tokenizer on prediction dataset",
        )

    # Initialize our training
    rng = jax.random.PRNGKey(training_args.seed)
    rng, dropout_rng = jax.random.split(rng)

    # Store some constant
    num_epochs = int(training_args.num_train_epochs)
    train_batch_size = int(training_args.per_device_train_batch_size) * jax.device_count()
    total_batch_size = int(train_batch_size) * training_args.gradient_accumulation_steps
    eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
    steps_per_epoch = len(train_dataset) // train_batch_size
    total_steps = steps_per_epoch * num_epochs
    total_optimization_steps = (len(train_dataset) // total_batch_size) * num_epochs

    # Create learning rate schedule
    linear_decay_lr_schedule_fn = create_learning_rate_fn(
        len(train_dataset),
        total_batch_size,
        training_args.num_train_epochs,
        training_args.warmup_steps,
        training_args.learning_rate,
        data_args.no_decay
    )

    # We use Optax's "masking" functionality to not apply weight decay
    # to bias and LayerNorm scale parameters. decay_mask_fn returns a
    # mask boolean with the same structure as the parameters.
    # The mask is True for parameters that should be decayed.
    # Note that this mask is specifically adapted for FlaxBart.
    # For FlaxT5, one should correct the layer norm parameter naming
    # accordingly - see `run_t5_mlm_flax.py` e.g.
    def decay_mask_fn(params):
        flat_params = traverse_util.flatten_dict(params)
        layer_norm_params = [
            (name, "scale") for name in ["self_attn_layer_norm", "layernorm_embedding", "final_layer_norm"]
        ]
        flat_mask = {path: (path[-1] != "bias" and path[-2:] not in layer_norm_params) for path in flat_params}
        return traverse_util.unflatten_dict(flat_mask)

    # create adam optimizer
    if training_args.adafactor:
        # We use the default parameters here to initialize adafactor,
        # For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
        optimizer = optax.adafactor(
            learning_rate=linear_decay_lr_schedule_fn,
        )
    else:
        optimizer = optax.adamw(
            learning_rate=linear_decay_lr_schedule_fn,
            b1=training_args.adam_beta1,
            b2=training_args.adam_beta2,
            eps=training_args.adam_epsilon,
            weight_decay=training_args.weight_decay,
            mask=decay_mask_fn,
        )

    # Setup train state
    state = TrainState.create(
        apply_fn=model.__call__,
        params=model.params,
        tx=optimizer,
        dropout_rng=dropout_rng,
        grad_accum=jax.tree_map(jnp.zeros_like, model.params),
        optimizer_step=0,
    )
    if model_args.from_checkpoint is not None:
        # restore optimizer state, step and optimizer_step
        restore_state(state, artifact_dir)

    # label smoothed cross entropy
    def loss_fn(logits, labels):
        loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1]))
        loss = loss.mean()
        return loss

    # Define gradient update step fn
    def train_step(state, batch):
        dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)

        def compute_loss(params):
            labels = batch.pop("labels")
            logits = state.apply_fn(**batch, params=params, dropout_rng=dropout_rng, train=True)[0]
            loss = loss_fn(logits, labels)
            return loss

        grad_fn = jax.value_and_grad(compute_loss)
        loss, grads = grad_fn(state.params)
        grad_accum = jax.tree_multimap(lambda x, y: x + y, grads, state.grad_accum)

        def update_fn():
            grads = jax.tree_map(lambda x: x / training_args.gradient_accumulation_steps, grad_accum)
            grads = jax.lax.pmean(grads, "batch")
            new_state = state.apply_gradients(
                grads=grads, grad_accum=jax.tree_map(jnp.zeros_like, grads), optimizer_step=state.optimizer_step + 1
            )
            return new_state

        new_state = jax.lax.cond(
            (state.step + 1) % training_args.gradient_accumulation_steps == 0,
            lambda _: update_fn(),
            lambda _: state.replace(grad_accum=grad_accum, step=state.step + 1),
            None,
        )

        metrics = {"loss": loss, "learning_rate": linear_decay_lr_schedule_fn(state.optimizer_step)}
        metrics = jax.lax.pmean(metrics, axis_name="batch")

        return new_state.replace(dropout_rng=new_dropout_rng), metrics

    # Define eval fn
    def eval_step(params, batch):
        labels = batch.pop("labels")
        logits = model(**batch, params=params, train=False)[0]
        loss = loss_fn(logits, labels)

        # summarize metrics
        metrics = {"loss": loss}
        metrics = jax.lax.pmean(metrics, axis_name="batch")
        return metrics

    # Define generation function
    max_length = (
        data_args.val_max_target_length if data_args.val_max_target_length is not None else model.config.max_length
    )
    num_beams = data_args.num_beams if data_args.num_beams is not None else model.config.num_beams
    gen_kwargs = {"max_length": max_length, "num_beams": num_beams}

    def generate_step(params, batch):
        model.params = params
        output_ids = model.generate(batch["input_ids"], attention_mask=batch["attention_mask"], **gen_kwargs)
        return output_ids.sequences

    # Create parallel version of the train and eval step
    p_train_step = jax.pmap(
        train_step, "batch", donate_argnums=(0,)
    )
    p_eval_step = jax.pmap(eval_step, "batch")
    p_generate_step = jax.pmap(generate_step, "batch")

    # Replicate the train state on each device
    state = state.replicate()

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
    logger.info(
        f"  Total train batch size (w. parallel & distributed) = {train_batch_size * training_args.gradient_accumulation_steps}"
    )
    logger.info(f"  Total global steps = {total_steps}")
    logger.info(f"  Total optimization steps = {total_optimization_steps}")

    train_time = 0
    epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
    global_step = 0

    def run_evaluation():
        # ======================== Evaluating ==============================
        eval_metrics = []
        if training_args.do_eval:
            eval_preds = []
            eval_labels = []

            eval_loader = data_loader(input_rng, eval_dataset, eval_batch_size)
            eval_steps = len(eval_dataset) // eval_batch_size
            for _ in tqdm(range(eval_steps), desc="Evaluating...", position=2, leave=False):
                # Model forward
                batch = next(eval_loader)
                labels = batch["labels"]

                metrics = p_eval_step(state.params, batch)
                eval_metrics.append(metrics)

                # generation
                if data_args.predict_with_generate:
                    generated_ids = p_generate_step(state.params, batch)
                    eval_preds.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
                    eval_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))

            # normalize eval metrics
            eval_metrics = get_metrics(eval_metrics)
            eval_metrics = jax.tree_map(jnp.mean, eval_metrics)

            # log metrics
            wandb_log(eval_metrics, step=global_step, prefix='eval')

            # Print metrics and update progress bar
            desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})"
            epochs.write(desc)
            epochs.desc = desc

            return eval_metrics

    def run_save_model(state, step, epoch, eval_metrics=None):
        if jax.process_index() == 0:
            params = jax.device_get(jax.tree_map(lambda x: x[0], state.params))

            # save model locally
            model.save_pretrained(
                training_args.output_dir,
                params=params,
            )

            # save tokenizer
            tokenizer.save_pretrained(training_args.output_dir)

            # save state
            state = unreplicate(state)
            with (Path(training_args.output_dir) /  'opt_state.msgpack').open('wb') as f:
                f.write(to_bytes(state.opt_state))
            with (Path(training_args.output_dir) /  'training_state.json').open('w') as f:
                json.dump({'step': state.step.item()}, f)

            # save to W&B
            if data_args.log_model:
                metadata = {'step': step, 'epoch': epoch}
                if eval_metrics is not None:
                    metadata['eval/loss'] = eval_metrics['loss']
                artifact = wandb.Artifact(
                    name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
                )
                artifact.add_file(str(Path(training_args.output_dir) / 'flax_model.msgpack')) 
                artifact.add_file(str(Path(training_args.output_dir) / 'config.json')) 
                artifact.add_file(str(Path(training_args.output_dir) / 'tokenizer.json'))
                artifact.add_file(str(Path(training_args.output_dir) / 'tokenizer_config.json'))
                artifact.add_file(str(Path(training_args.output_dir) / 'vocab.json'))
                artifact.add_file(str(Path(training_args.output_dir) / 'merges.txt'))
                artifact.add_file(str(Path(training_args.output_dir) / 'special_tokens_map.json'))
                artifact.add_file(str(Path(training_args.output_dir) / 'opt_state.msgpack'))
                artifact.add_file(str(Path(training_args.output_dir) / 'training_state.json'))
                wandb.run.log_artifact(artifact)

            # save to the hub
            if training_args.push_to_hub:
                model.save_pretrained(
                    training_args.output_dir,
                    params=params,
                    push_to_hub=training_args.push_to_hub,
                    commit_message=f"Saving weights and logs of epoch {epoch+1}",
                    temp_dir=True  # avoid issues with being in a repository
                )
                
    for epoch in epochs:
        # ======================== Training ================================
        train_start = time.time()

        # Create sampling rng
        rng, input_rng = jax.random.split(rng)

        # Generate an epoch by shuffling sampling indices from the train dataset
        train_loader = data_loader(input_rng, train_dataset, train_batch_size, shuffle=True)
        steps_per_epoch = len(train_dataset) // train_batch_size
        # train
        for step in tqdm(range(steps_per_epoch), desc="Training...", position=1, leave=False):
            global_step +=1
            batch = next(train_loader)
            state, train_metric = p_train_step(state, batch)

            if global_step % data_args.log_interval == 0 and jax.process_index() == 0:
                # log metrics
                wandb_log(unreplicate(train_metric), step=global_step, prefix='train')

            if global_step % training_args.eval_steps == 0:
                run_evaluation()
            
            if global_step % data_args.save_model_steps == 0:
                run_save_model(state, global_step, epoch)
        
        # log final train metrics
        wandb_log(unreplicate(train_metric), step=global_step, prefix='train')

        train_time += time.time() - train_start
        train_metric = unreplicate(train_metric)
        epochs.write(
            f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
        )

        # Final evaluation
        eval_metrics = run_evaluation()

        # save checkpoint after each epoch and push checkpoint to the hub
        run_save_model(state, global_step, epoch, eval_metrics)


    # ======================== Prediction loop ==============================
    if training_args.do_predict:
        logger.info("*** Predict ***")

        pred_metrics = []
        pred_generations = []
        pred_labels = []

        pred_loader = data_loader(input_rng, predict_dataset, eval_batch_size)
        pred_steps = len(predict_dataset) // eval_batch_size
        for _ in tqdm(range(pred_steps), desc="Predicting...", position=2, leave=False):
            # Model forward
            batch = next(pred_loader)
            labels = batch["labels"]

            metrics = p_eval_step(state.params, batch)
            pred_metrics.append(metrics)

            # generation
            if data_args.predict_with_generate:
                generated_ids = p_generate_step(state.params, batch)
                pred_generations.extend(jax.device_get(generated_ids.reshape(-1, gen_kwargs["max_length"])))
                pred_labels.extend(jax.device_get(labels.reshape(-1, labels.shape[-1])))

        # normalize prediction metrics
        pred_metrics = get_metrics(pred_metrics)
        pred_metrics = jax.tree_map(jnp.mean, pred_metrics)

        # Print metrics
        desc = f"Predict Loss: {pred_metrics['loss']})"
        logger.info(desc)


if __name__ == "__main__":
    main()