boris commited on
Commit
71c4de3
1 Parent(s): 3a3d375

fix(inference): use float32 + flatten logits

Browse files
tools/inference/inference_pipeline.ipynb CHANGED
@@ -70,7 +70,7 @@
70
  "# Model references\n",
71
  "\n",
72
  "# dalle-mini\n",
73
- "DALLE_MODEL = 'dalle-mini/dalle-mini/model-262fxth3:latest' # can be wandb artifact or 🤗 Hub or local folder\n",
74
  "DALLE_COMMIT_ID = None # used only with 🤗 hub\n",
75
  "\n",
76
  "# VQGAN model\n",
@@ -92,7 +92,13 @@
92
  "import jax.numpy as jnp\n",
93
  "\n",
94
  "# type used for computation - use bfloat16 on TPU's\n",
95
- "dtype = jnp.bfloat16 if jax.local_device_count() == 8 else jnp.float32"
 
 
 
 
 
 
96
  ]
97
  },
98
  {
@@ -281,7 +287,7 @@
281
  },
282
  "outputs": [],
283
  "source": [
284
- "prompt = 'view of the beach during sunset'"
285
  ]
286
  },
287
  {
@@ -292,7 +298,8 @@
292
  },
293
  "outputs": [],
294
  "source": [
295
- "processed_prompt = text_normalizer(prompt) if model.config.normalize_text else prompt"
 
296
  ]
297
  },
298
  {
@@ -375,7 +382,7 @@
375
  "outputs": [],
376
  "source": [
377
  "# number of predictions\n",
378
- "n_predictions = 8\n",
379
  "\n",
380
  "# We can customize top_k/top_p used for generating samples\n",
381
  "gen_top_k = None\n",
@@ -431,7 +438,7 @@
431
  "# get clip scores\n",
432
  "clip_inputs = processor(text=[prompt] * jax.device_count(), images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
433
  "logits = p_clip(shard(clip_inputs), clip_params)\n",
434
- "logits = logits.squeeze()"
435
  ]
436
  },
437
  {
 
70
  "# Model references\n",
71
  "\n",
72
  "# dalle-mini\n",
73
+ "DALLE_MODEL = 'dalle-mini/dalle-mini/model-3bqwu04f:latest' # can be wandb artifact or 🤗 Hub or local folder\n",
74
  "DALLE_COMMIT_ID = None # used only with 🤗 hub\n",
75
  "\n",
76
  "# VQGAN model\n",
 
92
  "import jax.numpy as jnp\n",
93
  "\n",
94
  "# type used for computation - use bfloat16 on TPU's\n",
95
+ "dtype = jnp.bfloat16 if jax.local_device_count() == 8 else jnp.float32\n",
96
+ "\n",
97
+ "# TODO:\n",
98
+ "# - we currently have an issue with model.generate() in bfloat16\n",
99
+ "# - https://github.com/google/jax/pull/9089 should fix it\n",
100
+ "# - remove below line and test on TPU with next release of JAX\n",
101
+ "dtype = jnp.float32"
102
  ]
103
  },
104
  {
 
287
  },
288
  "outputs": [],
289
  "source": [
290
+ "prompt = 'a red T-shirt'"
291
  ]
292
  },
293
  {
 
298
  },
299
  "outputs": [],
300
  "source": [
301
+ "processed_prompt = text_normalizer(prompt) if model.config.normalize_text else prompt\n",
302
+ "processed_prompt"
303
  ]
304
  },
305
  {
 
382
  "outputs": [],
383
  "source": [
384
  "# number of predictions\n",
385
+ "n_predictions = 32\n",
386
  "\n",
387
  "# We can customize top_k/top_p used for generating samples\n",
388
  "gen_top_k = None\n",
 
438
  "# get clip scores\n",
439
  "clip_inputs = processor(text=[prompt] * jax.device_count(), images=images, return_tensors='np', padding='max_length', max_length=77, truncation=True).data\n",
440
  "logits = p_clip(shard(clip_inputs), clip_params)\n",
441
+ "logits = logits.squeeze().flatten()"
442
  ]
443
  },
444
  {
tools/inference/log_inference_samples.ipynb DELETED
@@ -1,434 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "id": "4ff2a984-b8b2-4a69-89cf-0d16da2393c8",
7
- "metadata": {},
8
- "outputs": [],
9
- "source": [
10
- "import tempfile\n",
11
- "from functools import partial\n",
12
- "import random\n",
13
- "import numpy as np\n",
14
- "from PIL import Image\n",
15
- "from tqdm.notebook import tqdm\n",
16
- "import jax\n",
17
- "import jax.numpy as jnp\n",
18
- "from flax.training.common_utils import shard, shard_prng_key\n",
19
- "from flax.jax_utils import replicate\n",
20
- "import wandb\n",
21
- "from dalle_mini.model import CustomFlaxBartForConditionalGeneration\n",
22
- "from vqgan_jax.modeling_flax_vqgan import VQModel\n",
23
- "from transformers import BartTokenizer, CLIPProcessor, FlaxCLIPModel\n",
24
- "from dalle_mini.text import TextNormalizer"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": null,
30
- "id": "92f4557c-fd7f-4edc-81c2-de0b0a10c270",
31
- "metadata": {},
32
- "outputs": [],
33
- "source": [
34
- "run_ids = [\"63otg87g\"]\n",
35
- "ENTITY, PROJECT = \"dalle-mini\", \"dalle-mini\" # used only for training run\n",
36
- "VQGAN_REPO, VQGAN_COMMIT_ID = (\n",
37
- " \"dalle-mini/vqgan_imagenet_f16_16384\",\n",
38
- " \"e93a26e7707683d349bf5d5c41c5b0ef69b677a9\",\n",
39
- ")\n",
40
- "latest_only = True # log only latest or all versions\n",
41
- "suffix = \"\" # mainly for duplicate inference runs with a deleted version\n",
42
- "add_clip_32 = False"
43
- ]
44
- },
45
- {
46
- "cell_type": "code",
47
- "execution_count": null,
48
- "id": "71f27b96-7e6c-4472-a2e4-e99a8fb67a72",
49
- "metadata": {},
50
- "outputs": [],
51
- "source": [
52
- "# model.generate parameters - Not used yet\n",
53
- "gen_top_k = None\n",
54
- "gen_top_p = None\n",
55
- "temperature = None"
56
- ]
57
- },
58
- {
59
- "cell_type": "code",
60
- "execution_count": null,
61
- "id": "93b2e24b-f0e5-4abe-a3ec-0aa834cc3bf3",
62
- "metadata": {},
63
- "outputs": [],
64
- "source": [
65
- "batch_size = 8\n",
66
- "num_images = 128\n",
67
- "top_k = 8\n",
68
- "text_normalizer = TextNormalizer()\n",
69
- "padding_item = \"NONE\"\n",
70
- "seed = random.randint(0, 2 ** 32 - 1)\n",
71
- "key = jax.random.PRNGKey(seed)\n",
72
- "api = wandb.Api()"
73
- ]
74
- },
75
- {
76
- "cell_type": "code",
77
- "execution_count": null,
78
- "id": "c6a878fa-4bf5-4978-abb5-e235841d765b",
79
- "metadata": {},
80
- "outputs": [],
81
- "source": [
82
- "vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
83
- "vqgan_params = replicate(vqgan.params)\n",
84
- "\n",
85
- "clip16 = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
86
- "processor16 = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch16\")\n",
87
- "clip16_params = replicate(clip16.params)\n",
88
- "\n",
89
- "if add_clip_32:\n",
90
- " clip32 = FlaxCLIPModel.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
91
- " processor32 = CLIPProcessor.from_pretrained(\"openai/clip-vit-base-patch32\")\n",
92
- " clip32_params = replicate(clip32.params)"
93
- ]
94
- },
95
- {
96
- "cell_type": "code",
97
- "execution_count": null,
98
- "id": "a500dd07-dbc3-477d-80d4-2b73a3b83ef3",
99
- "metadata": {},
100
- "outputs": [],
101
- "source": [
102
- "@partial(jax.pmap, axis_name=\"batch\")\n",
103
- "def p_decode(indices, params):\n",
104
- " return vqgan.decode_code(indices, params=params)\n",
105
- "\n",
106
- "\n",
107
- "@partial(jax.pmap, axis_name=\"batch\")\n",
108
- "def p_clip16(inputs, params):\n",
109
- " logits = clip16(params=params, **inputs).logits_per_image\n",
110
- " return logits\n",
111
- "\n",
112
- "\n",
113
- "if add_clip_32:\n",
114
- "\n",
115
- " @partial(jax.pmap, axis_name=\"batch\")\n",
116
- " def p_clip32(inputs, params):\n",
117
- " logits = clip32(params=params, **inputs).logits_per_image\n",
118
- " return logits"
119
- ]
120
- },
121
- {
122
- "cell_type": "code",
123
- "execution_count": null,
124
- "id": "e57797ab-0b3a-4490-be58-03d8d1c23fe9",
125
- "metadata": {},
126
- "outputs": [],
127
- "source": [
128
- "with open(\"samples.txt\", encoding=\"utf8\") as f:\n",
129
- " samples = [l.strip() for l in f.readlines()]\n",
130
- " # make list multiple of batch_size by adding elements\n",
131
- " samples_to_add = [padding_item] * (-len(samples) % batch_size)\n",
132
- " samples.extend(samples_to_add)\n",
133
- " # reshape\n",
134
- " samples = [samples[i : i + batch_size] for i in range(0, len(samples), batch_size)]"
135
- ]
136
- },
137
- {
138
- "cell_type": "code",
139
- "execution_count": null,
140
- "id": "f3e02d9d-4ee1-49e7-a7bc-4d8b139e9614",
141
- "metadata": {},
142
- "outputs": [],
143
- "source": [
144
- "def get_artifact_versions(run_id, latest_only=False):\n",
145
- " try:\n",
146
- " if latest_only:\n",
147
- " return [\n",
148
- " api.artifact(\n",
149
- " type=\"bart_model\", name=f\"{ENTITY}/{PROJECT}/model-{run_id}:latest\"\n",
150
- " )\n",
151
- " ]\n",
152
- " else:\n",
153
- " return api.artifact_versions(\n",
154
- " type_name=\"bart_model\",\n",
155
- " name=f\"{ENTITY}/{PROJECT}/model-{run_id}\",\n",
156
- " per_page=10000,\n",
157
- " )\n",
158
- " except:\n",
159
- " return []"
160
- ]
161
- },
162
- {
163
- "cell_type": "code",
164
- "execution_count": null,
165
- "id": "f0d7ed17-7abb-4a31-ab3c-a12b9039a570",
166
- "metadata": {},
167
- "outputs": [],
168
- "source": [
169
- "def get_training_config(run_id):\n",
170
- " training_run = api.run(f\"{ENTITY}/{PROJECT}/{run_id}\")\n",
171
- " config = training_run.config\n",
172
- " return config"
173
- ]
174
- },
175
- {
176
- "cell_type": "code",
177
- "execution_count": null,
178
- "id": "7e784a43-626d-4e8d-9e47-a23775b2f35f",
179
- "metadata": {},
180
- "outputs": [],
181
- "source": [
182
- "# retrieve inference run details\n",
183
- "def get_last_inference_version(run_id):\n",
184
- " try:\n",
185
- " inference_run = api.run(f\"dalle-mini/dalle-mini/{run_id}-clip16{suffix}\")\n",
186
- " return inference_run.summary.get(\"version\", None)\n",
187
- " except:\n",
188
- " return None"
189
- ]
190
- },
191
- {
192
- "cell_type": "code",
193
- "execution_count": null,
194
- "id": "d1cc9993-1bfc-4ec6-a004-c056189c42ac",
195
- "metadata": {},
196
- "outputs": [],
197
- "source": [
198
- "# compile functions - needed only once per run\n",
199
- "def pmap_model_function(model):\n",
200
- " @partial(jax.pmap, axis_name=\"batch\")\n",
201
- " def _generate(tokenized_prompt, key, params):\n",
202
- " return model.generate(\n",
203
- " **tokenized_prompt,\n",
204
- " do_sample=True,\n",
205
- " num_beams=1,\n",
206
- " prng_key=key,\n",
207
- " params=params,\n",
208
- " top_k=gen_top_k,\n",
209
- " top_p=gen_top_p\n",
210
- " )\n",
211
- "\n",
212
- " return _generate"
213
- ]
214
- },
215
- {
216
- "cell_type": "code",
217
- "execution_count": null,
218
- "id": "23b2444c-67a9-44d7-abd1-187ed83a9431",
219
- "metadata": {},
220
- "outputs": [],
221
- "source": [
222
- "run_id = run_ids[0]\n",
223
- "# TODO: loop over runs"
224
- ]
225
- },
226
- {
227
- "cell_type": "code",
228
- "execution_count": null,
229
- "id": "bba70f33-af8b-4eb3-9973-7be672301a0b",
230
- "metadata": {},
231
- "outputs": [],
232
- "source": [
233
- "artifact_versions = get_artifact_versions(run_id, latest_only)\n",
234
- "last_inference_version = get_last_inference_version(run_id)\n",
235
- "training_config = get_training_config(run_id)\n",
236
- "run = None\n",
237
- "p_generate = None\n",
238
- "model_files = [\n",
239
- " \"config.json\",\n",
240
- " \"flax_model.msgpack\",\n",
241
- " \"merges.txt\",\n",
242
- " \"special_tokens_map.json\",\n",
243
- " \"tokenizer.json\",\n",
244
- " \"tokenizer_config.json\",\n",
245
- " \"vocab.json\",\n",
246
- "]\n",
247
- "for artifact in artifact_versions:\n",
248
- " print(f\"Processing artifact: {artifact.name}\")\n",
249
- " version = int(artifact.version[1:])\n",
250
- " results16, results32 = [], []\n",
251
- " columns = [\"Caption\"] + [f\"Image {i+1}\" for i in range(top_k)]\n",
252
- "\n",
253
- " if latest_only:\n",
254
- " assert last_inference_version is None or version > last_inference_version\n",
255
- " else:\n",
256
- " if last_inference_version is None:\n",
257
- " # we should start from v0\n",
258
- " assert version == 0\n",
259
- " elif version <= last_inference_version:\n",
260
- " print(\n",
261
- " f\"v{version} has already been logged (versions logged up to v{last_inference_version}\"\n",
262
- " )\n",
263
- " else:\n",
264
- " # check we are logging the correct version\n",
265
- " assert version == last_inference_version + 1\n",
266
- "\n",
267
- " # start/resume corresponding run\n",
268
- " if run is None:\n",
269
- " run = wandb.init(\n",
270
- " job_type=\"inference\",\n",
271
- " entity=\"dalle-mini\",\n",
272
- " project=\"dalle-mini\",\n",
273
- " config=training_config,\n",
274
- " id=f\"{run_id}-clip16{suffix}\",\n",
275
- " resume=\"allow\",\n",
276
- " )\n",
277
- "\n",
278
- " # work in temporary directory\n",
279
- " with tempfile.TemporaryDirectory() as tmp:\n",
280
- "\n",
281
- " # download model files\n",
282
- " artifact = run.use_artifact(artifact)\n",
283
- " for f in model_files:\n",
284
- " artifact.get_path(f).download(tmp)\n",
285
- "\n",
286
- " # load tokenizer and model\n",
287
- " tokenizer = BartTokenizer.from_pretrained(tmp)\n",
288
- " model = CustomFlaxBartForConditionalGeneration.from_pretrained(tmp)\n",
289
- " model_params = replicate(model.params)\n",
290
- "\n",
291
- " # pmap model function needs to happen only once per model config\n",
292
- " if p_generate is None:\n",
293
- " p_generate = pmap_model_function(model)\n",
294
- "\n",
295
- " # process one batch of captions\n",
296
- " for batch in tqdm(samples):\n",
297
- " processed_prompts = (\n",
298
- " [text_normalizer(x) for x in batch]\n",
299
- " if model.config.normalize_text\n",
300
- " else list(batch)\n",
301
- " )\n",
302
- "\n",
303
- " # repeat the prompts to distribute over each device and tokenize\n",
304
- " processed_prompts = processed_prompts * jax.device_count()\n",
305
- " tokenized_prompt = tokenizer(\n",
306
- " processed_prompts,\n",
307
- " return_tensors=\"jax\",\n",
308
- " padding=\"max_length\",\n",
309
- " truncation=True,\n",
310
- " max_length=128,\n",
311
- " ).data\n",
312
- " tokenized_prompt = shard(tokenized_prompt)\n",
313
- "\n",
314
- " # generate images\n",
315
- " images = []\n",
316
- " pbar = tqdm(\n",
317
- " range(num_images // jax.device_count()),\n",
318
- " desc=\"Generating Images\",\n",
319
- " leave=True,\n",
320
- " )\n",
321
- " for i in pbar:\n",
322
- " key, subkey = jax.random.split(key)\n",
323
- " encoded_images = p_generate(\n",
324
- " tokenized_prompt, shard_prng_key(subkey), model_params\n",
325
- " )\n",
326
- " encoded_images = encoded_images.sequences[..., 1:]\n",
327
- " decoded_images = p_decode(encoded_images, vqgan_params)\n",
328
- " decoded_images = decoded_images.clip(0.0, 1.0).reshape(\n",
329
- " (-1, 256, 256, 3)\n",
330
- " )\n",
331
- " for img in decoded_images:\n",
332
- " images.append(\n",
333
- " Image.fromarray(np.asarray(img * 255, dtype=np.uint8))\n",
334
- " )\n",
335
- "\n",
336
- " def add_clip_results(results, processor, p_clip, clip_params):\n",
337
- " clip_inputs = processor(\n",
338
- " text=batch,\n",
339
- " images=images,\n",
340
- " return_tensors=\"np\",\n",
341
- " padding=\"max_length\",\n",
342
- " max_length=77,\n",
343
- " truncation=True,\n",
344
- " ).data\n",
345
- " # each shard will have one prompt, images need to be reorganized to be associated to the correct shard\n",
346
- " images_per_prompt_indices = np.asarray(\n",
347
- " range(0, len(images), batch_size)\n",
348
- " )\n",
349
- " clip_inputs[\"pixel_values\"] = jnp.concatenate(\n",
350
- " list(\n",
351
- " clip_inputs[\"pixel_values\"][images_per_prompt_indices + i]\n",
352
- " for i in range(batch_size)\n",
353
- " )\n",
354
- " )\n",
355
- " clip_inputs = shard(clip_inputs)\n",
356
- " logits = p_clip(clip_inputs, clip_params)\n",
357
- " logits = logits.reshape(-1, num_images)\n",
358
- " top_scores = logits.argsort()[:, -top_k:][..., ::-1]\n",
359
- " logits = jax.device_get(logits)\n",
360
- " # add to results table\n",
361
- " for i, (idx, scores, sample) in enumerate(\n",
362
- " zip(top_scores, logits, batch)\n",
363
- " ):\n",
364
- " if sample == padding_item:\n",
365
- " continue\n",
366
- " cur_images = [images[x] for x in images_per_prompt_indices + i]\n",
367
- " top_images = [\n",
368
- " wandb.Image(cur_images[x], caption=f\"Score: {scores[x]:.2f}\")\n",
369
- " for x in idx\n",
370
- " ]\n",
371
- " results.append([sample] + top_images)\n",
372
- "\n",
373
- " # get clip scores\n",
374
- " pbar.set_description(\"Calculating CLIP 16 scores\")\n",
375
- " add_clip_results(results16, processor16, p_clip16, clip16_params)\n",
376
- "\n",
377
- " # get clip 32 scores\n",
378
- " if add_clip_32:\n",
379
- " pbar.set_description(\"Calculating CLIP 32 scores\")\n",
380
- " add_clip_results(results32, processor32, p_clip32, clip32_params)\n",
381
- "\n",
382
- " pbar.close()\n",
383
- "\n",
384
- " # log results\n",
385
- " table = wandb.Table(columns=columns, data=results16)\n",
386
- " run.log({\"Samples\": table, \"version\": version})\n",
387
- " wandb.finish()\n",
388
- "\n",
389
- " if add_clip_32:\n",
390
- " run = wandb.init(\n",
391
- " job_type=\"inference\",\n",
392
- " entity=\"dalle-mini\",\n",
393
- " project=\"dalle-mini\",\n",
394
- " config=training_config,\n",
395
- " id=f\"{run_id}-clip32{suffix}\",\n",
396
- " resume=\"allow\",\n",
397
- " )\n",
398
- " table = wandb.Table(columns=columns, data=results32)\n",
399
- " run.log({\"Samples\": table, \"version\": version})\n",
400
- " wandb.finish()\n",
401
- " run = None # ensure we don't log on this run"
402
- ]
403
- },
404
- {
405
- "cell_type": "code",
406
- "execution_count": null,
407
- "id": "415d3f54-7226-43de-9eea-4283a948dc93",
408
- "metadata": {},
409
- "outputs": [],
410
- "source": []
411
- }
412
- ],
413
- "metadata": {
414
- "kernelspec": {
415
- "display_name": "Python 3 (ipykernel)",
416
- "language": "python",
417
- "name": "python3"
418
- },
419
- "language_info": {
420
- "codemirror_mode": {
421
- "name": "ipython",
422
- "version": 3
423
- },
424
- "file_extension": ".py",
425
- "mimetype": "text/x-python",
426
- "name": "python",
427
- "nbconvert_exporter": "python",
428
- "pygments_lexer": "ipython3",
429
- "version": "3.9.7"
430
- }
431
- },
432
- "nbformat": 4,
433
- "nbformat_minor": 5
434
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tools/inference/samples.txt DELETED
@@ -1,124 +0,0 @@
1
- t-shirt, size M
2
- flower dress, size M
3
- white snow covered mountain under blue sky during daytime
4
- aerial view of the beach during daytime
5
- aerial view of the beach at night
6
- a beautiful sunset at a beach with a shell on the shore
7
- a farmhouse surrounded by beautiful flowers
8
- sunset over green mountains
9
- a photo of san francisco golden gate bridge
10
- painting of an oniric forest glade surrounded by tall trees
11
- a graphite sketch of a gothic cathedral
12
- a graphite sketch of Elon Musk
13
- still life in the style of Kandinsky
14
- still life in the style of Picasso
15
- a colorful stairway to heaven
16
- a background consisting of colors blue, green, and red
17
- Mohammed Ali and Mike Tyson in a match
18
- Pele and Maradona in a match
19
- view of Mars from space
20
- a picture of the Eiffel tower on the moon
21
- a picture of the Eiffel tower on the moon, Earth is in the background
22
- watercolor of the Eiffel tower on the moon
23
- the moon is a skull
24
- epic sword fight
25
- underwater cathedral
26
- a photo of a fantasy version of New York City
27
- a picture of fantasy kingdoms
28
- a volcano erupting next to San Francisco golden gate bridge
29
- Paris in a far future, futuristic Paris
30
- real painting of an alien from Monet
31
- the communist statue of liberty
32
- robots taking control over humans
33
- illustration of an astronaut in a space suit playing guitar
34
- a clown wearing a spacesuit floating in space
35
- a dog playing with a ball
36
- a cat sits on top of an alligator
37
- a very cute cat laying by a big bike
38
- a rat holding a red lightsaber in a white background
39
- a very cute giraffe making a funny face
40
- A unicorn is passing by a rainbow in a field of flowers
41
- an elephant made of carrots
42
- an elephant on a unicycle during a circus
43
- photography of a penguin watching television
44
- a penguin is walking on the Moon, Earth is in the background
45
- a penguin standing on a tower of books holds onto a rope from a helicopter
46
- rat wearing a crown
47
- looking into the sky, 10 airplanes are seen overhead
48
- shelves filled with books and alchemy potion bottles
49
- this is a detailed high-resolution scan of a human brain
50
- a restaurant menu
51
- a bottle of coca-cola on a table
52
- a peanut
53
- a cross-section view of a walnut
54
- a living room with two white armchairs and a painting of the collosseum. The painting is mounted above a modern fireplace.
55
- a long line of alternating green and red blocks
56
- a long line of green blocks on a beach at subset
57
- a long line of peaches on a beach at sunset
58
- a picture of a castle from minecraft
59
- a cute pikachu teapot
60
- an illustration of pikachu sitting on a bench eating an ice cream
61
- mario is jumping over a zebra
62
- famous anime hero
63
- star wars concept art
64
- Cartoon of a carrot with big eyes
65
- a cartoon of a superhero bear
66
- an illustration of a cute skeleton wearing a blue hoodie
67
- illustration of a baby shark swimming around corals
68
- an illustration of an avocado in a beanie riding a motorcycle
69
- logo of a robot wearing glasses and reading a book
70
- illustration of a cactus lifting weigths
71
- logo of a cactus lifting weights
72
- a photo of a camera from the future
73
- a skeleton with the shape of a spider
74
- a collection of glasses is sitting on a table
75
- a painting of a capybara sitting on a mountain during fall in surrealist style
76
- a pentagonal green clock
77
- a small red block sitting on a large green block
78
- a storefront that has the word 'openai' written on it
79
- a tatoo of a black broccoli
80
- a variety of clocks is sitting on a table
81
- a table has a train model on it with other cars and things
82
- a pixel art illustration of an eagle sitting in a field in the afternoon
83
- an emoji of a baby fox wearing a blue hat, green gloves, red shirt, and yellow pants
84
- an emoji of a baby penguin wearing a blue hat, blue gloves, red shirt, and green pants
85
- an extreme close-up view of a capybara sitting in a field
86
- an illustration of a baby cucumber with a mustache playing chess
87
- an illustration of a baby daikon radish in a tutu walking a dog
88
- an illustration of a baby hedgehog in a cape staring at its reflection in a mirror
89
- an illustration of a baby panda with headphones holding an umbrella in the rain
90
- urinals are lined up in a jungle
91
- a muscular banana sitting upright on a bench smoking watching a banana on television, high definition photography
92
- a human face
93
- a person is holding a phone and a waterbottle, running a marathon
94
- a child eating a birthday cake near some balloons
95
- Young woman riding her bike through the forest
96
- the best soccer team of the world
97
- the best football team of the world
98
- the best basketball team of the world
99
- happy, happiness
100
- sad, sadness
101
- the representation of infinity
102
- the end of the world
103
- the last sunrise on earth
104
- a portrait of a nightmare creature watching at you
105
- an avocado armchair
106
- an armchair in the shape of an avocado
107
- illustration of an avocado armchair
108
- illustration of an armchair in the shape of an avocado
109
- logo of an avocado armchair
110
- an avocado armchair flying into space
111
- a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps
112
- an illustration of an avocado in a christmas sweater staring at its reflection in a mirror
113
- illustration of an avocado armchair getting married to a pineapple
114
- half human half cat
115
- half human half dog
116
- half human half pen
117
- half human half garbage
118
- half human half avocado
119
- half human half Eiffel tower
120
- a propaganda poster for transhumanism
121
- a propaganda poster for building a space elevator
122
- a beautiful epic fantasy painting of a space elevator
123
- a transformer architecture
124
- a transformer in real life