GPT4V-Image-Captioner / lib /Api_Utils.py
frappuccino's picture
Upload folder using huggingface_hub
0140c70 verified
raw
history blame
13.3 kB
import io
import os
import time
import json
import base64
import requests
import subprocess
import platform
from PIL import Image
from requests.adapters import HTTPAdapter
import re
from urllib3.util.retry import Retry
from huggingface_hub import snapshot_download
API_PATH = 'api_settings.json'
QWEN_MOD = 'qwen-vl-plus'
DEFAULT_GPT_MODEL = 'gpt-4o'
DEFAULT_CLAUDE_MODEL = 'claude-3-sonnet'
# 扩展prompt {} 标记功能,从文件读取额外内容
def addition_prompt_process(prompt, image_path):
# 从image_path分离文件名和扩展名,并更改扩展名为.txt
if '{' not in prompt and '}' not in prompt:
return prompt
file_root, _ = os.path.splitext(image_path)
new_file_name = os.path.basename(file_root) + ".txt"
# 从prompt中提取目录路径
directory_path = prompt[prompt.find('{') + 1: prompt.find('}')]
# 拼接新的文件路径
full_path = os.path.join(directory_path, new_file_name)
# 读取full_path指定的文件内容
try:
with open(full_path, 'r') as file:
file_content = file.read()
except Exception as e:
return f"Error reading file: {e}"
new_prompt = prompt.replace('{' + directory_path + '}', file_content)
return new_prompt
# 通义千问VL
def is_ali(api_url):
if api_url.endswith("/v1/services/aigc/multimodal-generation/generation"):
return True
else:
return False
def is_claude(api_url, model):
if api_url.endswith("v1/messages") or "claude" in model.lower():
return True
else:
return False
def qwen_api_switch(mod):
global QWEN_MOD
QWEN_MOD = mod
return QWEN_MOD
def qwen_api(image_path, prompt, api_key):
print(f"QWEN_MOD: {QWEN_MOD}")
os.environ['DASHSCOPE_API_KEY'] = api_key
from dashscope import MultiModalConversation
img = f"file://{image_path}"
messages = [{
'role': 'system',
'content': [
{'text': 'You are a helpful assistant.'}
]
}, {
'role':'user',
'content': [
{'image': img},
{'text': prompt},
]
}]
response = MultiModalConversation.call(model=QWEN_MOD, messages=messages, stream=False, max_length=300)
if '"status_code": 400' in response:
return f"API error: {response}"
if response.get("output") and response["output"].get("choices") and response["output"]["choices"][0].get("message") and response["output"]["choices"][0]["message"].get("content"):
if response["output"]["choices"][0]["message"]["content"][0].get("text", False):
caption = response["output"]["choices"][0]["message"]["content"][0]["text"]
else:
box_value = response["output"]["choices"][0]["message"]["content"][0]["box"]
text_value = response["output"]["choices"][0]["message"]["content"][1]["text"]
b_value = re.search(r'<ref>(.*?)</ref>', box_value).group(1)
caption = b_value + text_value
else:
caption = response
return caption
def claude_api(image_path, prompt, api_key, api_url, model, quality=None):
print(f"CLAUDE_MODEL: {model}")
with open(image_path, "rb") as image_file:
# Downscale the image
image = Image.open(image_file)
width, height = image.size
if quality:
if quality == "high":
target = 1024
elif quality == "low":
target = 512
elif quality == "auto":
if width >= 1024 or height >= 1024:
target = 1024
else:
target = 512
else:
target = 1024
aspect_ratio = width / height
# Determine the new dimensions while maintaining the aspect ratio
if width > target or height > target:
if width > height:
new_width = target
new_height = int(new_width / aspect_ratio)
else:
new_height = target
new_width = int(new_height * aspect_ratio)
else:
new_width, new_height = width, height
# Resize the image
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
# Use buffer to store image
buffer = io.BytesIO()
resized_image.save(buffer, format="JPEG")
image_base64 = base64.b64encode(buffer.getvalue()).decode('utf-8')
# Claude API
data = {
"model": model,
"max_tokens": 300,
"messages": [
{"role": "user", "content": [
{"type": "image", "source": {
"type": "base64",
"media_type": "image/jpeg",
"data": image_base64
}
},
{"type": "text", "text": prompt}
]
}
]
}
# print(f"data: {data}\n")
headers = {
"Content-Type": "application/json",
"x-api-key:": api_key,
"anthropic-version": "2023-06-01"
}
# 配置重试策略
retries = Retry(total=5,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS", "POST"]) # 更新参数名
with requests.Session() as s:
s.mount('https://', HTTPAdapter(max_retries=retries))
try:
response = s.post(api_url, headers=headers, json=data)
response.raise_for_status()
# 连接错误回显
except requests.exceptions.HTTPError as errh:
return f"HTTP Error: {errh}"
except requests.exceptions.ConnectionError as errc:
return f"Error Connecting: {errc}"
except requests.exceptions.Timeout as errt:
return f"Timeout Error: {errt}"
except requests.exceptions.RequestException as err:
return f"OOps: Something Else: {err}"
try:
response_data = response.json()
if 'error' in response_data:
return f"API error: {response_data['error']['message']}"
caption = response_data['content'][0]['text']
return caption
except Exception as e:
return f"Failed to parse the API response: {e}\n{response.text}"
# API使用
def run_openai_api(image_path, prompt, api_key, api_url, quality=None, timeout=10, model=DEFAULT_GPT_MODEL):
prompt = addition_prompt_process(prompt, image_path)
# print("prompt{}:",prompt)
# Qwen-VL
if is_ali(api_url):
return qwen_api(image_path, prompt, api_key)
if is_claude(api_url, model):
return claude_api(image_path, prompt, api_key, api_url, model, quality)
with open(image_path, "rb") as image_file:
image_base64 = base64.b64encode(image_file.read()).decode('utf-8')
# GPT-4V
data = {
"model": model,
"messages": [
{
"role": "user",
"content":
[
{"type": "image_url", "image_url":
{"url": f"data:image/jpeg;base64,{image_base64}",
"detail": f"{quality}"}
},
{"type": "text", "text": prompt}
]
}
],
"max_tokens": 300
}
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
# 配置重试策略
retries = Retry(total=5,
backoff_factor=1,
status_forcelist=[429, 500, 502, 503, 504],
allowed_methods=["HEAD", "GET", "OPTIONS", "POST"]) # 更新参数名
with requests.Session() as s:
s.mount('https://', HTTPAdapter(max_retries=retries))
try:
response = s.post(api_url, headers=headers, json=data, timeout=timeout)
response.raise_for_status()
# 连接错误回显
except requests.exceptions.HTTPError as errh:
return f"HTTP Error: {errh}"
except requests.exceptions.ConnectionError as errc:
return f"Error Connecting: {errc}"
except requests.exceptions.Timeout as errt:
return f"Timeout Error: {errt}"
except requests.exceptions.RequestException as err:
return f"OOps: Something Else: {err}"
try:
response_data = response.json()
if 'error' in response_data:
return f"API error: {response_data['error']['message']}"
caption = response_data["choices"][0]["message"]["content"]
return caption
except Exception as e:
return f"Failed to parse the API response: {e}\n{response.text}"
# API存档
def save_api_details(api_key, api_url):
if is_ali(api_url):
settings = {
'model' : QWEN_MOD,
'api_key': api_key,
'api_url': api_url
}
else:
settings = {
'model' : 'GPT',
'api_key': api_key,
'api_url': api_url
}
# 不记录空的apikey
if api_key != "":
with open(API_PATH, 'w', encoding='utf-8') as f:
json.dump(settings, f)
def save_state(llm, key, url):
if llm[:3] == "GPT" or llm[:4] == "qwen":
settings = {
'model': llm,
'api_key': key,
'api_url': url
}
elif llm[:3] == "Cog" or llm[:4] == "moon" or llm[:7] == "MiniCPM":
settings = {
'model' : llm,
'api_key': "",
'api_url': "http://127.0.0.1:8000/v1/chat/completions"
}
output = f"Set {llm} as default. / {llm}已设为默认"
with open(API_PATH, 'w', encoding='utf-8') as f:
json.dump(settings, f)
return output
# 读取API设置
def get_api_details():
settings_file = API_PATH
if os.path.exists(settings_file):
with open(settings_file, 'r') as f:
settings = json.load(f)
if settings.get('model', '') != '':
mod = settings.get('model', '')
url = settings.get('api_url', '')
if mod[:4] == "qwen":
global QWEN_MOD
QWEN_MOD = mod
else:
if is_ali(url):
mod = QWEN_MOD
return mod, settings.get('api_key', ''), url
else:
if settings.get('api_key', '') != '':
i_key = settings.get('api_key', '')
i_url = settings.get('api_url', '')
save_api_details(i_key,i_url)
with open(settings_file, 'r') as i:
settings = json.load(i)
return settings.get('model', ''), settings.get('api_key', ''), settings.get('api_url', '')
return 'GPT', '', ''
# 本地模型相关
def downloader(model_type, acceleration):
endpoint = 'https://hf-mirror.com' if acceleration == 'CN' else None
if model_type == 'vqa' or model_type == 'chat':
snapshot_download(
repo_id="lmsys/vicuna-7b-v1.5",
allow_patterns=["tokenizer*","special_tokens_map.json"],
endpoint=endpoint
)
if model_type == 'vqa':
snapshot_download(
repo_id="THUDM/cogagent-vqa-hf",
local_dir="./models/cogagent-vqa-hf",
max_workers=8,
endpoint=endpoint
)
elif model_type == 'chat':
snapshot_download(
repo_id="THUDM/cogagent-chat-hf",
local_dir="./models/cogagent-chat-hf",
max_workers=8,
endpoint=endpoint
)
elif model_type == 'moondream':
snapshot_download(
repo_id="vikhyatk/moondream1",
local_dir="./models/moondream",
max_workers=8,
endpoint=endpoint
)
elif model_type == 'minicpm':
snapshot_download(
repo_id="openbmb/MiniCPM-Llama3-V-2_5",
local_dir="./models/MiniCPM-Llama3-V-2_5",
max_workers=8,
endpoint=endpoint
)
return f"{model_type} Model download completed. / {model_type}模型下载完成"
def installer():
if platform.system() == "Windows":
install_command = f'.\install_script\installcog.bat'
else:
install_command = f'./install_script/installcog.sh'
subprocess.Popen(f'chmod +x {install_command}', shell=True)
subprocess.Popen('', shell=True) #Use an empty subprocess to refresh permission. If deleted, installcog.sh wouldn't launch properly, with Permission denied error
subprocess.Popen(install_command, shell=True)
while not os.path.exists('install_temp.txt'):
time.sleep(2)
with open('install_temp.txt', 'r') as file:
result_string = file.read()
os.remove('install_temp.txt')
return result_string