Spaces:
Runtime error
Runtime error
import torch | |
from torch import nn | |
from PIL import Image | |
from einops import rearrange | |
from torchvision.transforms.v2 import ( | |
Compose, | |
Resize, | |
InterpolationMode, | |
ToImage, | |
ToDtype, | |
Normalize, | |
) | |
import timm | |
class VisualHolder(nn.Module): | |
def __init__(self, model): | |
super().__init__() | |
self.visual = model | |
def forward(self, x): | |
return self.visual(x) | |
class ModelHolder(nn.Module): | |
def __init__(self, model): | |
super().__init__() | |
self.model = model | |
def forward(self, x): | |
return self.model(x) | |
class LinearPatchEmbedding(nn.Module): | |
def __init__(self, conv): | |
super().__init__() | |
self.linear = nn.Linear(588, 1152) | |
self.linear.weight.data = conv.weight.data.view(1152, -1) | |
if conv.bias is not None: | |
self.linear.bias.data = conv.bias.data | |
def forward(self, x): | |
return self.linear(x) | |
class MLP(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: int = None, | |
out_features: int = None, | |
act_layer: nn.Module = nn.GELU, | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
torch.nn.init.kaiming_normal_( | |
self.fc1.weight, mode="fan_in", nonlinearity="relu" | |
) | |
torch.nn.init.kaiming_normal_( | |
self.fc2.weight, mode="fan_in", nonlinearity="relu" | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.fc2(x) | |
return x | |
class VisionProjection(nn.Module): | |
def __init__(self): | |
super().__init__() | |
image_embedding_dim = 1152 | |
model_dim = 2048 | |
hidden_dim = model_dim * 4 | |
self.mlp = MLP(image_embedding_dim, hidden_dim, model_dim) | |
def device(self): | |
return self.mlp.fc1.weight.device | |
def forward(self, x): | |
return self.mlp(x) | |
class VisionEncoder(nn.Module): | |
def __init__(self) -> None: | |
super().__init__() | |
self.encoder = ModelHolder( | |
VisualHolder(timm.create_model("vit_so400m_patch14_siglip_384")) | |
) | |
self.encoder.model.visual.patch_embed = LinearPatchEmbedding( | |
self.encoder.model.visual.patch_embed.proj | |
) | |
self.encoder.model.visual.attn_pool = nn.Identity() | |
self.projection = VisionProjection() | |
self.preprocess = Compose( | |
[ | |
Resize(size=(378, 378), interpolation=InterpolationMode.BICUBIC), | |
ToImage(), | |
ToDtype(torch.float32, scale=True), | |
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), | |
] | |
) | |
def device(self): | |
return self.projection.mlp.fc1.weight.device | |
def dtype(self): | |
return self.projection.mlp.fc1.weight.dtype | |
def __call__(self, image: Image) -> torch.Tensor: | |
with torch.no_grad(): | |
x = ( | |
self.preprocess(image.convert("RGB")) | |
.unsqueeze(0) | |
.to(self.device, dtype=self.dtype) | |
) | |
x = rearrange(x, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14) | |
x = self.encoder(x) | |
x = self.projection(x) | |
return x | |