File size: 1,128 Bytes
22d8c5e
 
be1cec5
22d8c5e
be1f8d6
0212f65
be1f8d6
be1cec5
 
be1f8d6
 
4f80c2a
be1f8d6
0c59e8e
be1cec5
be1f8d6
be1cec5
be1f8d6
be1cec5
be1f8d6
 
 
 
 
be1cec5
22d8c5e
4f80c2a
 
 
 
 
22d8c5e
be1f8d6
be1cec5
be1f8d6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import gradio as gr
import tensorflow as tf
from PIL import Image
import numpy as np

labels = ['Cubone', 'Ditto', 'Psyduck', 'Snorlax', 'Weedle']

def predict_pokemon_type(uploaded_file):
    if uploaded_file is None:
        return "No file uploaded.", None, "No prediction"

    model = tf.keras.models.load_model('pokemon-model.keras')

    # Load the image from the file path
    with Image.open(uploaded_file) as img:
        img = img.resize((150, 150))
        img_array = np.array(img)

        prediction = model.predict(np.expand_dims(img_array, axis=0))
        
        confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}

        return img, confidences

# Define the Gradio interface
iface = gr.Interface(
    fn=predict_pokemon_type,  
    inputs=gr.File(label="Upload File"),
    outputs=["image", "text"],
    title="Pokemon Classifier",
    description="Upload a picture of a Pokemon (preferably Cubone, Ditto, Psyduck, Snorlax, or Weedle) to see its type and confidence level. The trained model has a test accuracy of 99.17%!"
)

# Launch the interface
iface.launch()