Patacotron / pages /Entorno de Ejecución.py
frncscp's picture
Update pages/Entorno de Ejecución.py
9b05108
raw
history blame
12.9 kB
import streamlit as st
import tensorflow as tf
from tensorflow.keras.models import load_model
from transformers import AutoConfig, AutoModel, pipeline#, AutoProcessor, AutoModelForZeroShotImageClassification
from PIL import Image
import os
import cv2
import numpy as np
import requests
st.set_page_config(
page_title = 'Patacotrón',
layout = 'wide',
menu_items = {
"About" : 'Proyecto ideado para la investigación de "Clasificación de imágenes de una sola clase con algortimos de Inteligencia Artificial".',
"Report a Bug" : 'https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link'
}
)
st.sidebar.write("contact@patacotron.tech")
cnn, vit, zero_shot, autoencoder, svm, iforest, gan = st.tabs(["CNN", "ViT", "Zero-Shot", "Autoencoder", "OC-SVM", 'iForest', 'GAN'])
def predict(_model_list, _weights, _img):
y_gorrito = 0
raw_img = cv2.cvtColor(_img, cv2.COLOR_BGR2RGB)
img = cv2.resize(_img, (IMAGE_WIDTH, IMAGE_HEIGHT))
for model, weight in zip(_model_list, _weights):
y_gorrito += tf.cast(model(tf.expand_dims(img/255., 0)), dtype=tf.float32)*weight
return [y_gorrito / sum(_weights), raw_img]
def preprocess(file_uploader, module = 'cv2'): #makes the uploaded image readable
img = np.frombuffer(uploaded_file.read(), np.uint8)
if module == 'cv2':
img = cv2.imdecode(img, cv2.IMREAD_COLOR)
elif module == 'pil':
img = Image.open(file_uploader)
return img
def multiclass_prediction(classifier, important_class): #made for hf zero-shot pipeline results
score = (max([classifier[i]['score'] for i in range(len(classifier))]))
labels = [predict['label'] for predict in classifier if score == predict['score']]
for clase in classifier:
if clase['label'] == important_class:
class_score = clase['score']
return (labels[0] if len(labels) == 1 else labels, score, class_score)
API_URL = "https://api-inference.huggingface.co/models"
headers = {"Authorization": f"Bearer {st.secrets['token']}"}
def query(data, model_name): #HF API
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data)
while "error" in response.json():
response = requests.post(API_URL + "/" + model_name, headers=headers, data=data)
st.write("Done.")
return response.json() #.json
@st.cache_resource
def load_clip():
#processor = AutoProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
#model = AutoModelForZeroShotImageClassification.from_pretrained("openai/clip-vit-large-patch14-336")
classifier = pipeline("zero-shot-image-classification", model = 'openai/clip-vit-large-patch14-336')
return classifier
with cnn:
col_a, col_b, = st.columns(2)
ultra_flag = None
with col_a:
st.title("Redes neuronales convolucionales")
st.caption("Los modelos no están en orden de eficacia, sino en orden de creación.")
current_dir = os.getcwd()
root_dir = os.path.dirname(current_dir)
# Join the path to the models folder
DIR = os.path.join(current_dir, "models")
models = os.listdir(DIR)
common_root = r"/home/user/app/models/ptctrn_v"
common_end = ".h5"
model_dict = dict()
for model in models: #preprocessing of strings so the name is readable in the multiselect bar
model_dir = os.path.join(DIR, model)
model_name = 'Patacotrón ' + model_dir.split(common_root)[-1].split(common_end)[0]
model_dict[model_name] = model_dir
#ultraversions = ['Patacotrón 1.5', 'Patacotrón 1.7', 'Patacotrón 1.8', 'Patacotrón 1.12', 'Patacotrón 1.12.2', 'Patacotrón 1.12.3']
#ultraversions = ['Patacotrón 1.5', 'Patacotrón 1.6', 'Patacotrón 1.12.2', 'Patacotrón 1.8', 'Patacotrón 1.12']#, 'Patacotrón 1.13.20', 'Patacotrón 1.13.38']
#['Patacotrón 1.5', 'Patacotrón 1.6', 'Patacotrón 1.7', 'Patacotrón 1.12'] #
#ultra_button = st.checkbox('Ultra-Patacotrón (en construcción, no es la mejor versión)')
#ultra_flag = False
weight_list = []
#if ultra_button:
# ultra_flag = True
#weight_list = [3, 1, 4.5, 1, .8, 1] [.5, 1.75, 4, .5, 2]
# weight_list = [2.5, 1.8, 1.5, 3.14, 2.2] #.2, 2]
#[1, 2, 3, 2.5]
# st.caption('Para Ultra-Patacotrón, este porcentaje no representa una a priori una probabilidad, sino la combinación ponderada de modelos con sesgos positivos y negativos, lo importante es que identifique correctamente el objeto.')
# Create a dropdown menu to select the model
model_choice = st.multiselect("Seleccione uno o varios modelos de clasificación", model_dict.keys())
threshold = st.slider('¿Cuál va a ser el límite donde se considere patacón? (el valor recomendado es de 75%-80%)', 0, 100, 50, key = 'threshold_convnet')
selected_models = []
# Set the image dimensions
IMAGE_WIDTH = IMAGE_HEIGHT = 224
executed = False
with col_b:
uploaded_file = st.file_uploader(key = 'conv_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
if st.button(key = 'convnet_button', label ='¿Hay un patacón en la imagen?'):
if len(model_choice) < 1:
#if (len(model_choice) > 0 and ultra_flag) or (len(model_choice) == 0 and ultra_flag is None):
st.write('Debe elegir como mínimo un modelo.')
elif uploaded_file is not None:
img = preprocess(uploaded_file)
#if ultra_flag:
# with st.spinner('Cargando ultra-predicción...'):
# if not executed:
# ultraptctrn = [load_model(model_dict[model]) for model in ultraversions]
# executed = True
# final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(ultraptctrn))]
# y_gorrito, raw_img = predict(ultraptctrn, final_weights, img)
#else:
with st.spinner('Cargando predicción...'):
selected_models = [load_model(model_dict[model]) for model in model_choice if model not in selected_models]
final_weights = weight_list if len(weight_list) >= 1 else [1 for i in range(len(selected_models))]
y_gorrito, raw_img = predict(selected_models, final_weights, img)
if round(float(y_gorrito*100)) >= threshold:
st.success("¡Patacón Detectado!")
else:
st.error("No se considera que haya un patacón en la imagen")
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%')
st.caption('Si los resultados no fueron los esperados, por favor, [haz click aquí](https://docs.google.com/forms/d/e/1FAIpQLScH0ZxAV8aSqs7TPYi86u0nkxvQG3iuHCStWNB-BoQnSW2V0g/viewform?usp=sf_link)')
st.image(raw_img)
else:
st.write('Revisa haber seleccionado los modelos y la imagen correctamente.')
with vit:
col_a, col_b = st.columns(2)
with col_a:
st.title('Visual Transformers')
st.caption('One class is all you need!')
model_dict = {
'google/vit-base-patch16-224-in21k' : 'frncscp/patacoptimus-prime',
'facebook/convnext-large-224' : 'frncscp/pataconxt'
}
model_choice = st.multiselect("Seleccione un modelo de clasificación", model_dict.keys(), key = 'ViT_multiselect')
uploaded_file = st.file_uploader(key = 'ViT_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
flag = False
threshold = st.slider('¿Cuál va a ser el límite desde donde se considere patacón? (se recomienda por encima del 80%)', 0, 100, 80, key = 'threshold_vit')
with col_b:
if st.button(key = 'ViT_button', label ='¿Hay un patacón en la imagen?'):
if len(model_choice) < 1:
print('Recuerda seleccionar al menos un modelo de clasificación')
elif uploaded_file is not None:
with st.spinner('Cargando predicción...'):
api_result = query(uploaded_file.read(), model_dict[model_choice[0]])
#classifiers = [pipeline("image-classification", model= model_dict[model_choice[i]]) for i in range(len(model_choice))]
#classifier = pipeline("image-classification", model= model_dict[model_choice[0]])
#img = preprocess(uploaded_file, module = 'pil')
#def vit_ensemble(classifier_list, img):
# y_gorrito = 0
# for classifier in classifier_list:
# classifier = classifier(img)
# for clase in classifier:
# if clase['label'] == 'Patacon-True':
# y_gorrito += clase["score"]
# return y_gorrito / len(classifier_list)
y_gorrito = 0
for model in model_choice:
api_result = query(uploaded_file.read(), model_dict[model])
y_gorrito += api_result[1]["score"]
y_gorrito /= len(model_choice)
st.write("y gorrito calculado")
#classifier = classifier(img)
#for clase in classifier:
# if clase['label'] == 'Patacon-True':
# y_gorrito = clase["score"]
#y_gorrito = classifier[0]["score"]
#y_gorrito = vit_ensemble(classifiers, img)
if round(float(y_gorrito*100)) >= threshold:
st.success("¡Patacón Detectado!")
else:
st.error("No se considera que haya un patacón en la imagen")
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%')
st.image(img)
else:
st.write("Asegúrate de haber subido correctamente la imagen.")
with zero_shot:
col_a, col_b = st.columns(2)
zsloaded = []
with col_a:
st.title("Clasificación Zero-Shot")
st.caption("Usando Clip de OpenAI")
labels_for_classification = ["A yellow deep fried smashed plantain",
"Fried food",
"Fruit",
"Anything"]
uploaded_file = st.file_uploader(key = 'ZS_upload', label = 'Sube la imagen a clasificar',type= ['jpg','png', 'jpeg', 'jfif', 'webp', 'heic'])
with col_b:
if st.button(key = 'ZS_button', label ='¿Hay un patacón en la imagen?'):
if uploaded_file is not None:
with st.spinner('Cargando el modelo (puede demorar hasta un minuto, pero después predice rápido)'):
classifier = load_clip()
with st.spinner('Cargando predicción...'):
img = preprocess(uploaded_file, module = 'pil')
zs_classifier = classifier(img,
candidate_labels = labels_for_classification)
label, _, y_gorrito = multiclass_prediction(zs_classifier, labels_for_classification[0])
if label == "A yellow deep fried smashed plantain":
st.success("¡Patacón Detectado!")
else:
st.error("No se considera que haya un patacón en la imagen")
st.caption(f'La probabilidad de que la imagen tenga un patacón es del: {round(float(y_gorrito * 100), 2)}%')
st.image(img)
else:
st.write("Asegúrate de haber subido correctamente la imagen.")
with autoencoder:
st.write('Próximamente')
with gan:
st.write('Próximamente')
with svm:
st.write('Próximamente')
with iforest:
st.write('Próximamente')