Spaces:
Build error
Build error
File size: 1,541 Bytes
36bec1c a66dfeb ec72da9 b3ba25a 2bacaf7 a66dfeb ec72da9 2bacaf7 a66dfeb b3ba25a a66dfeb b3ba25a ec72da9 b3ba25a a66dfeb b3ba25a a66dfeb ec72da9 a66dfeb b3ba25a a66dfeb 2bacaf7 2920572 b3ba25a a66dfeb b3ba25a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
import gradio as gr
import os
import whisper
from pydub import AudioSegment
# Load the Whisper model
model = whisper.load_model("base")
# Function to process the uploaded audio file and perform transcription
def process_audio(upload):
# Save the uploaded audio file
file_path = "uploaded_audio"
upload_path = f"{file_path}.mp3"
upload.save(upload_path)
# Convert the audio file to WAV format
wav_path = f"{file_path}.wav"
audio = AudioSegment.from_file(upload_path)
audio.export(wav_path, format="wav")
# Load the audio file and perform preprocessing
audio = whisper.load_audio(wav_path)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# Detect the spoken language
_, probs = model.detect_language(mel)
detected_language = max(probs, key=probs.get)
# Perform transcription using Whisper ASR
options = whisper.DecodingOptions()
result = whisper.decode(model, mel, options)
transcription = result.text
# Delete the temporary audio files
os.remove(upload_path)
os.remove(wav_path)
return transcription
# Create a file input component for uploading the audio file
audio_input = gr.inputs.File(label="Upload Audio", accept=".wav, .mp3")
# Create a text output component for displaying the transcription
text_output = gr.outputs.Textbox(label="Transcription")
# Create a Gradio interface
gr.Interface(fn=process_audio, inputs=audio_input, outputs=text_output, title="Audio Transcription").launch()
|